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Predicting Climate Regime Change in Chaotic Convection

The Lorenz system

History

Inception

Developed in the ’60s by Edward N. Lorenz
(1917–2008) to show the National Weather
Service that linear methods are inadequate for the
problem of short-term weather prediction. It is the
simplest realistic model of convection.

First example of deterministic chaos:

“When the present determines the future, but the approximate
present does not approximately determine the future.”

–Lorenz
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The Lorenz system

Chaos

Characteristics of chaotic systems

I sensitive dependence on initial conditions (ICs)

I small deviations grow exponentially with time

I aperiodic

I nonlinear

I ... but deterministic!

=⇒ It is difficult to forecast chaotic behavior even with
knowledge of the governing equations.
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The Lorenz system

Thermosyphon

A physical analog
Lorenz derived his equations for fluid held between a lower, hot
plate and an upper, cold plate (Rayleigh-Bénard). For certain
parameters, his solution describes the dynamics of a thermosyphon.
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The Lorenz system

Thermosyphon

Experiment and simulation

I Experimental apparatus under
construction

I 8 sites for temperature
measurements

I Heating/cooling jackets

I Temperature profile for steady
rotating fluid

I O(104) discretization of
Navier-Stokes equations

I FLUENT: a computational
fluid dynamics package

Image credit: Ridouane
Kameron Decker Harris 6/17
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Experiment and simulation

The plan:

FLUENT simulations
represent the thermosyphon
“truth”
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The Lorenz system

Thermosyphon

Experiment and simulation

The plan:

FLUENT simulations
represent the thermosyphon
“truth”

Lorenz-like (EM) model
makes the forecasts

This is what we call the
imperfect model forecasting
scenario.

I Temperature profile for steady
rotating fluid

I O(104) discretization of
Navier-Stokes equations

I FLUENT: a computational
fluid dynamics package

Image credit: Ridouane
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The Lorenz system

Thermosyphon

Regime changes in action

(LoadingMovie)

Credit: El Hassan Ridouane
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The Lorenz system

Thermosyphon

Lorenz’s chaotic attractor

The system’s attractor, which is
the shape it traces out in

state space
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The forecasting problem

Data assimilation

The initial value problem

When observing a real system, we can never perfectly know its
state. Data assimilation (DA) estimates this using forecasts and
observations.
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The forecasting problem

Data assimilation

DA Algorithms

The optimal combination of background forecasts and observations
depends on (estimated) background and observational error.

I 3D-Var: Constant background error. In operational use.

I Extended Kalman Filter: Update background error with linear
model. Numerically prohibitive for large models.

I Ensemble Kalman Filter: Use an ensemble of states to
represent the current state. Ensemble spread used to estimate
background error. Numerically efficient in large models.

Ensemble filters are one type of candidate for next-generation
operational weather forecasting
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Results

Thermosyphon

DA results for EM forecasting FLUENT (imperfect model)
120s assimilation window
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Forecasting succeeds
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DA results for EM forecasting FLUENT (imperfect model)
300s assimilation window
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Results

Thermosyphon

DA results for EM forecasting FLUENT (imperfect model)
600s assimilation window
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Results

Thermosyphon

DA results: accuracy degrades for longer windows
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Results

Conclusions

Wrapping up

I DA is an effective way of coupling a low-dimensional,
approximate model to a realistic physical simulation of the
thermosyphon

I A combination of techniques should be able to quantitatively
predict regime changes and duration (soon)

I Application to laboratory thermosyphon

I Part of a larger effort to improve predictive power of global
weather and climate models . . .
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Results

Conclusions

Global weather model simulations

(LoadingMovie)

Credit: Nick Allgaier. . . check out his talk in the Jost room at 3:15
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