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Comprehensive knowledge of the brain’s wiring diagram is fundamental for understanding how the nervous system
processes information at both local and global scales. However, with the singular exception of the C. elegans microscale
connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level,
mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein
(EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and
high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic
and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D)
reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional
strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among
interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel
pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and
functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.

A central principle of neuroscience is that the nervous system is a net-
work of diverse types of neurons and supporting cells communicating
with each other mainly through synaptic connections. This overall brain
architecture is thought to be composed of four systems—motor, sens-
ory, behavioural state and cognitive—with parallel, distributed and/or
hierarchical sub-networks within each system and similarly complex,
integrative interconnections between different systems1. Specific groups
of neurons with diverse anatomical and physiological properties popu-
late each node of these sub- and supra-networks, and form extraord-
inarily intricate connections with other neurons located near and far.
Neuronal connectivity forms the structural foundation underlying neural
function, and bridges genotypes and behavioural phenotypes2,3. Connec-
tivity patterns also reflect the evolutionary conservation and divergence
in brain organization and function across species, as well as both the
commonality among individuals within a given species and the unique-
ness of each individual brain.

Despite the fundamental importance of neuronal connectivity, our
knowledge of it remains remarkably incomplete. C. elegans is the only
species for which an essentially complete wiring diagram of its 302 neu-
rons has been obtained through electron microscopy4. Histological tract
tracing studies in a wide range of animal species has generated a rich
body of knowledge that forms the foundation of our current understand-
ing of brain architecture, such as the powerful idea of multi-hierarchical
processing in sensory cortical systems5. However, much of these data
are qualitative, incomplete, variable, scattered and difficult to retrieve.
Thus, our knowledge of whole-brain connectivity is fragmented, with-
out a cohesive and comprehensive understanding in any single verte-
brate animal species (see for example the BAMS database for the rat
brain6). With recent advances in both computing power and optical imag-
ing techniques, it is now feasible to systematically map connectivity

throughout the entire brain. A salient example of this is the ongoing
effort in mapping connections in the Drosophila brain7,8.

The connectome9 refers to a comprehensive description of neuronal
connections, for example, the wiring diagram of the entire brain. Given
the enormous range of connectivity in the mammalian brain and the
relative inaccessibility of the human brain, such descriptions can exist
at multiple levels: macro-, meso- or microscale. At the macroscale, long-
range, region-to-region connections can be inferred from imaging white-
matter fibre tracts through diffusion tensor imaging (DTI) in the living
brain10. However, this is far from cellular-level resolution, given the size
of single volume elements (voxels .1 mm3). At the microscale, con-
nectivity is described at the level of individual synapses, for example,
through electron microscopic reconstruction at the nanometer scale4,11–15.
At present, the enormous time and resources required for this approach
makes it best suited for relatively small volumes of tissue (,1 mm3). At
the mesoscale, both long-range and local connections can be described
using a sampling approach with various neuroanatomical tracers that
enable whole-brain mapping in a reasonable time frame across many
animals. In addition, cell-type-specific mesoscale projects have the poten-
tial to dramatically enhance our understanding of the brain’s organ-
ization and function because cell types are fundamental cellular units
often conserved across species16,17.

Here we present a mesoscale connectome of the adult mouse brain,
The Allen Mouse Brain Connectivity Atlas. Axonal projections from
regions throughout the brain are mapped into a common 3D space using
a standardized platform to generate a comprehensive and quantitative
database of inter-areal and cell-type-specific projections. This Connec-
tivity Atlas has all the desired features summarized in a mesoscale con-
nectome position essay18: brain-wide coverage, validated and versatile
experimental techniques, a single standardized data format, a quantifiable
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and integrated neuroinformatics resource and an open-access public
online database.

Creating the Allen Mouse Brain Connectivity Atlas
A standardized data generation and processing platform was estab-
lished (Fig. 1a, see Methods). Recombinant adeno-associated virus (AAV),
serotype 1, expressing EGFP optimally was chosen as the anterograde
tracer to map axonal projections19,20. We also confirmed that AAV was
at least as efficient as, and more specific than, the classic anterograde
tracer biotinylated dextran amine (BDA) (Extended Data Fig. 1), as
described separately21.

EGFP-labelled axonal projections were systematically imaged using
the TissueCyte 1000 serial two-photon (STP) tomography system22, which
couples high-speed two-photon microscopy with automated vibratome
sectioning of an entire mouse brain. High x–y resolution (0.35mm) 2D
images in the coronal plane were obtained at a z-sampling interval of
100-mm across the entire brain during a continuous 18.5 h scanning
period, resulting in 140 serial sections (a ,750 gigabyte (GB) data set)
for each brain (Extended Data Fig. 2a and Supplementary Video 1).
Owing to its block-face imaging nature, STP tomography essentially
eliminates tissue distortions that occur in conventional section-based
histological methods and provides a series of highly conformed, inher-
ently pre-aligned images amenable to precise 3D mapping.

Image series were processed in an informatics pipeline with a series
of modules (see Methods). The injection site location of each brain was
manually drawn and annotated using the Allen Reference Atlas23 and
other reference data sets when appropriate. Stringent quality control cri-
teria were applied, discarding ,25% of all scanned brains due to insuf-
ficient quality in labelling or imaging. Each image set was registered
into a 3D Allen Reference Atlas model in two steps (Fig. 1b, upper
panels). First, a registration template was created by averaging many
image sets, and every image stack was aligned to this average template
brain. This process was repeated for multiple rounds, first globally (affine
registration) and then locally (deformable registration), each round gen-
erating a better average template and more precise alignment of indi-
vidual brains. The final average template brain, averaged from 1,231

brains, shows remarkably clear anatomical features and boundaries.
Second, the average template brain was aligned with the 3D reference
model, again using local alignment (Supplementary Video 2).

We developed a signal detection approach and applied it to each section
to segment GFP signals from background (Fig. 1b, lower panels). Signals
within injection site polygons were computed separately from the rest
of the brain. The segmented pixel counts were gridded into 100 3 100
3 100mm3 voxels to create an isotropic 3D summary of the projection
data. These voxels were used for data analysis, real-time data and cor-
relative searches, and visualization of projection relationships in the
Brain Explorer.

Meaningful informatics data quantification and comparison relies
on the mapping precision of the raw data sets into the 3D reference
framework. We investigated registration variability in two ways. First,
we selected 10 widely distributed anatomical fiducial points to compare
variability among 30 randomly selected brains (Extended Data Fig. 2b).
We found a high degree of concordance among individual brains, with
median variation , 49mm in each dimension between each brain and
the average template brain, which is comparable to the median inter-
rater variation of , 39mm. The median difference is , 71mm between
each brain and the Reference Atlas. Second, we compared manual and
informatics annotations of the injection sites from all Phase I (see below)
brains. The informatics-derived assignment of injection site structures
had . 75% voxel-level concordance with manual expert annotation for
almost all injection sites (Extended Data Fig. 2c). These analyses con-
firmed the relatively high fidelity of co-registration of raw image data
with the Allen Reference Atlas. The remaining difference is mainly due
to the imperfect alignment between the average template brain and the
Nissl-section-based Reference Atlas (Supplementary Video 2).

Mapping axonal projections in the whole mouse brain
The connectivity mapping was carried out in two phases. In Phase I (re-
gional projection mapping), axonal projections from 295 non-overlapping
anatomical regions, defined from the Allen Reference Atlas ontology
and tiling the entire brain space (Supplementary Table 1), were charac-
terized in wild-type mice with a pan-neuronal AAV vector expressing
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Figure 1 | Creation of the Connectivity Atlas. a, The data generation and
processing pipeline. QC, quality control. b, The two main steps of informatics
data processing: registration of each image series to a 3D template (upper
panels) and segmentation of fluorescent signal from background (lower
panels). c, Distribution of injection sites across the brain. The volume of the

injection was calculated and represented as a sphere. Locations of all these
injection spheres are superimposed together (left panel). Mean injection
volumes ( 6 s.e.m.) across major brain subdivisions are shown (right panel, see
Extended Data Fig. 3).
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EGFP under the human synapsin I promoter (AAV2/1.pSynI.EGFP.
WPRE.bGH, Fig. 1a). In Phase II (Cre driver based projection mapping),
axonal projections from genetically defined neuronal populations are
characterized in Cre driver mouse lines with a Cre-dependent AAV
(AAV2/1.pCAG.FLEX.EGFP.WPRE.bGH, Fig. 1a). We only report here
on the completed Phase I study, which includes 469 image sets with
injection sites covering nearly the entire brain (Fig. 1c, Extended Data
Fig. 3 and Supplementary Video 3). Only 18 intended structures were
completely missed due to redundancy or injection difficulty (Supplemen-
tary Table 1).

We examined multiple projection data sets in detail and found that
they were complete in capturing all known projection target sites through-
out the brain, sensitive in detecting thin axon fibres, and consistent in
quality to allow qualitative and quantitative comparisons. As an example,
7 representative isocortical injections (Fig. 2) reveal distinct projection
patterns in the striatum, thalamus, zona incerta, midbrain, pons and
medulla. To compare the brain-wide spatial distribution of projections
between cortical source regions, we placed each isocortical injection exper-
iment into one of 9 broad functional groups: frontal, motor, anterior
cingulate, somatosensory, auditory, retrosplenial, visual, ventral and asso-
ciational areas (Extended Data Fig. 4). The average percentages of total
projection signals into 12 major brain subdivisions showed dispropor-
tionately large projections within the isocortex, as well as distinct sub-
cortical distributions.

Brain-wide connectivity matrix
After segmentation and registration, we derived quantitative values from
segmented signals in each of the ,500,000 voxels contained within each
brain. We constructed a brain-wide, inter-areal, weighted connectivity
matrix using the entire Phase I experimental data set (Fig. 3, see Sup-
plementary Table 2 for the underlying values). The Allen Reference
Atlas contains 863 grey-matter structures at the highest level of the
ontology tree (Supplementary Table 1). We focused our analyses on the
chosen 295 structures, which are at a mid-ontology level correspond-
ing best with the approximate size of the tracer infection areas (for
example, isocortical areas are not subdivided by layers in this matrix),

but our techniques may be used at deeper levels in future studies. The
projection signal strength between each source and target was defined
as the total volume of segmented pixels in the target (summed across
all voxels within each target), normalized by the injection site volume
(total segmented pixels within the manually drawn injection area).

The majority of the 469 Phase I image sets are single injections into
spatially distinct regions, but a subset of these are repeated injections
into the same regions. To assess the consistency of projection patterns
across different animals and the reliability of using a single experiment
to define connections from any particular region, we compared brain-
wide connectivity strengths in 12 sets of duplicate injections (Extended
Data Fig. 5). Each pair was highly correlated across a range of projec-
tion strengths. Differences between any two points were on average only
a half order of magnitude (within one standard deviation). In primate
cortex, single tracer injections were also found to reliably predict mean
values obtained from repeated injections into the same source24.

The AAV tracer expresses cytoplasmic EGFP, which labels all pro-
cesses of the infected neuron, including axons and synaptic terminals.
Signals associated with the major fibre tracts of the brain, marked in
the Allen Reference Atlas, were removed before the informatics quan-
tification. However, there are also areas (for example, striatum) where
axons pass through without making synapses. Although passing fibres
can generally be distinguished from terminal zones by visual inspec-
tion of morphology in the 2D images (axons in terminal zones ramify
and contain synaptic boutons, see Extended Data Fig. 6), it is difficult
to confidently make this distinction algorithmically. We compared
results of terminal labelling using Synaptophysin-EGFP-expressing AAV
with the cytoplasmic EGFP AAV (Extended Data Fig. 6). Outside of
major fibre tracts, there was high correspondence between synaptic
EGFP and cytoplasmic EGFP signals in target regions. Nonetheless, it
should be noted that the connectivity matrix contains passing fibre
signals within grey matter, the nature of which should be manually
examined in 2D section images.

This connectivity matrix (Fig. 3) has several striking features. First,
connectivity strengths span a greater than 105-fold range across the
brain (Extended Data Fig. 7), suggesting that quantitative descriptions
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Figure 2 | Whole brain projection patterns from
seven representative cortical regions. One
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shown in the top row (see Supplementary Table 1
for the full name of each region). In the second row,
3D thumbnails of signal density projected onto a
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of connectivity must be considered for understanding neural network
properties24. Second, there are prevalent bilateral projections to cor-
responding ipsilateral and contralateral target sites, with ipsilateral pro-
jections generally stronger than contralateral ones (total normalized
projection volumes from all experiments are 4.3:1 between ipsilateral
and contralateral hemispheres). Third, of all possible connections, strong
connections are found in only a small fraction. Whereas 63% ipsilateral
and 51% contralateral targets have projection strength values above the
minimal true positive level of 1024 (which has a potential false positive
rate of 27%, Extended Data Fig. 7), only 21% ipsilateral and 9% contra-
lateral targets have projection strength values above the intermediate
level of 1022.

An inter-region connectivity model
Infected neurons in injection sites often span several brain areas. To
better describe the mutual connection strengths between ontologically
defined regions rather than injection sites, we constructed inter-region
connectivity matrices via a computational model (see Supplementary
Notes for a detailed description), using segmented projection volumes
(Fig. 3) to define connection strengths. Two basic modelling assump-
tions were used. The first, regional homogeneity, assumes that projections
between source X and target Y regions are homogeneously distributed,
so that infection of a subarea of the region is representative of the entire
region. This allows the value of WX,Y , a regional connectivity measure,
to be inferred from data that can at best only sample the source region.
The second assumption, projection additivity, assumes that the projec-
tion density of multiple source regions sum linearly to produce projec-
tion density in a target region. This allows relative contributions of different
sources to be determined for a target region, assuming at least partially
independent injections.

The 469 experiments allowed us to compute the mutual connections
among 213 regions. The best-fit model (Fig. 4a, see Supplementary
Table 3 for the underlying values) results from a bounded optimization
followed by a linear regression to determine connection coefficients,
assigning statistical confidence (P values) to each connection in the
matrix. Based on the bounded optimization, the number of non-zero
entries provides an upper bound estimate for sparsity: 36% for the
entire brain and 52% for cortico-cortical connections. Using confid-
ence values for each non-zero connection, the lower bound on sparsity
is 13% for the entire brain and 32% for cortico-cortical connections.

Connection strengths spanned ,105-fold range, and negatively cor-
related with the distance between connected regions (Supplementary
Notes and Supplementary Table 4). Based on the Akaike information
criterion (AIC), among hypothesized connection strength distributions
(lognormal, normal, exponential, inverse Gaussian) the brain-wide data
are best fit by a lognormal distribution (Fig. 4b, red lines). However, the
log-transformed connection strengths failed to pass the Shapiro-Wilk
test for normality (ipsilateral: P 5 0.039; contralateral: P 5 0.023), and
among Gaussian mixture models, a two-component one provided the
best fit (Fig. 4b, green lines). For cortico-cortical connections, both intra-
and inter-hemispheric distributions are well fit by lognormals (ipsilateral:
P 5 0.23; contralateral: P 5 0.21) individually (Fig. 4b), but they are
different enough that when combined the distribution is no longer lognor-
mal (P 5 0.0019). This extends previously reported findings that cortico-
cortical connections follow a lognormal distribution in the primate24,25

and mouse cortex26 to the entire mouse brain. These observations com-
bined indicate that connections might be lognormally distributed within
a region, yet vary systematically with statistics unique to the region.

Previous studies on connectivity considered global organizational
principles from a graph-theory perspective26–28. We transformed our
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Figure 3 | Adult mouse brain connectivity matrix. Each row shows the
quantitative projection signals from one of the 469 injected brains to each of the
295 non-overlapping target regions (in columns) in the right (ipsilateral) and
left (contralateral) hemispheres. Both source and target regions are displayed in
ontological order. The colour map indicates log10-transformed projection

strength (raw values in Supplementary Table 2). All values less than 1023.5 are
shown as blue to minimize false positives due to minor tissue and segmentation
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dominant effect of projection signals in certain disproportionately large regions
(for example, striatum).

RESEARCH ARTICLE

2 1 0 | N A T U R E | V O L 5 0 8 | 1 0 A P R I L 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

Eric Shea-Brown


Eric Shea-Brown




weighted, directed, connectivity matrix (Fig. 4a) to binary directed and
binary undirected data sets. Network analyses (Fig. 4c, see also Sup-
plementary Notes) reveal that the mouse brain has a higher mean
clustering coefficient (which gives the ratio of existing over possible
connections), 0.42, than expected by a random network29,30 with identical
sparseness, 0.12. Random graphs with matched node degree distribution
show a similar drop in clustering coefficient to 0.16. A ‘small-world’
network model31 approximates the clustering coefficient distribution
after being fit to its mean; however, its node degree distribution poorly
matches the data. Here, a better fit is achieved with a scale-free net-
work32; however, neither model simultaneously fits both distributions.

Next, we analysed similarity in connection patterns between differ-
ent regions. Similarity is characterized by two measures: correlations
between outgoing projections originating in two areas and correlations
between incoming projections ending in these two areas. Figure 4d depicts
heat maps of correlation coefficients between the same regions of the
linear model (Fig. 4a) depicted across the rows (that is, as a common
source for other regions), and down the columns (that is, as a common
target from other regions). The number of strong correlations is larger
than expected by chance, suggesting a tendency of regions to organize
into clusters to allow for strong indirect connectivity.

The cortico-striatal-thalamic network
Different cortical areas project to different domains of striatum and
thalamus with some degree of topography33–35. We used 80 isocortical
injection experiments to examine this. Spearman’s rank correlation
coefficient of segmented projection volumes of all voxels across the entire
brain was computed between every pair of experiments, and hierarch-
ical clustering led to 21 distinct groups, each containing 1 to 10 injections

(Extended Data Fig. 8a, b). Such grouping effectively divides the cortex
into 21 predominantly non-overlapping spatial zones as shown in a
flat-map cortex representation (Fig. 5a) defined by similar output pro-
jections. To effectively visualize different projection patterns in a com-
mon 3D space, voxel densities from 21 selected injections, one (centrally
located) from each cluster, were overlaid to create ‘dotograms’ (Fig. 5b,
c and Extended Data Fig. 8c), demonstrating that projections from
different cortical regions divide up striatum and thalamus into distinct
domains.

Average inter-group distances (Extended Data Fig. 9a–d) were used
to quantify the degree to which inter-group spatial relationships within
the cortex are preserved in target domains. Distance matrices for both
ipsilateral and contralateral cortical targets were highly correlated with
the distance matrix of injection sites, as were ipsilateral striatal and tha-
lamic distance matrices. Weaker correlations were observed in contra-
lateral striatum and thalamus. The computed distance matrices show
that the spatial relationship between injection sites is recapitulated in
the projections to striatum and thalamus, with some transformation of
scale and rotation.

This highly synchronized topography can be determined via virtual
tractography. Real tractography (following single axons) cannot be done
because of the discrete 100-mm sampling between sections. Instead, from
every voxel we computed a path back to the injection site by finding the
shortest density-weighted distance through the voxels. The 3D tracto-
graphy paths were plotted for both cortical hemispheres (Fig. 5d and
Extended Data Fig. 9e), ipsilateral striatum and thalamus (Fig. 5e, f).
The tractography shows that the paths themselves also retain the same
spatial organization. In particular for the thalamus, anterior groups pass
through fibre tracts in the striatum, narrowing through the globus pallidus,
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before spreading throughout the thalamus (Extended Data Fig. 9f). Pos-
terior groups (RSP, VIS) bypass the striatum but retain a strict topo-
graphy following the medial/lateral axis (Fig. 5f).

Although the striatum is a cellularly homogeneous structure that
can be subdivided into distinct domains selectively targeted by cortical
and other inputs36 (Fig. 5e), the thalamus is highly heterogeneous, com-
posed of up to 50 discrete nuclei37, receiving and relaying diverse sensory,
motor, behavioural state and cognitive information in parallel pathways
to and from the isocortex. We constructed a comprehensive wiring dia-
gram between major, functionally distinct cortical regions and thalamic
nuclei in the ipsilateral hemisphere (Fig. 6 and Extended Data Fig. 10),
by combining the quantitative connectivity matrix (Fig. 3) with the linear
model (Fig. 4a), manual proof-checking in the raw image sets, and cross-
referencing published literature (83 publications, mostly from rat data,
see Extended Data Fig. 10). This wiring diagram demonstrates specific
point-to-point interconnections between corresponding clusters that
divide the cortico-thalamic system into six functional pathways: visual,
somatosensory, auditory, motor, limbic and prefrontal. We also observed
cross-talk between these pathways, mediated by specific associational
cortical areas and integrative thalamic nuclei.

The specific observations from our data are mostly consistent (with
a few additions) with extensive previous studies in rats and the fewer
number of studies in mice (Extended Data Fig. 10) as well as with studies
in other mammalian species37–39, providing a comprehensive and uni-
fying view of mouse cortico-thalamic connections for the first time.
Much work is still needed to obtain a full picture of connectivity in the
cortico-thalamic system, including intra-cortical and intra-thalamic con-
nections, their relationships with the interconnections between cortex

and thalamus, and the exquisite cortical laminar specificity of the ori-
ginating and terminating zones of many of these connections5,38,40.

Discussion
The standardized projection data set and the informatics framework
built around it provide a brain-wide, detailed and quantitative connec-
tivity map that is the most comprehensive, to date, in any vertebrate
species. The high-throughput whole-brain mapping approach is remark-
ably consistent across animals, with an average correlation of 0.90 across
12 duplicate sets of mice (Extended Data Fig. 5). Informatics proces-
sing of the data set, such as co-registration and voxelization, helps with
direct comparison between any image series, and systematic modelling
and computational analyses of the entire network. Furthermore, the
entire data set preserves the 3D spatial relationship of different domains,
pathways and topography (Fig. 5). Thus, our connectivity atlas lays the
groundwork for large-scale analyses of global neural networks, as well
as networks within and between different neural systems.

As an initial analysis of this large-scale data set, we present an exam-
ination of both general principles of whole brain architecture and spe-
cific properties of cortical connections. We found that projections within
the ipsilateral hemisphere and to the corresponding locations in the con-
tralateral hemisphere are remarkably similar across the brain (Figs 3
and 4; Pearson’s r 5 0.595), with the contralateral connection strengths
significantly weaker than ipsilateral ones. The mouse brain shows defin-
ing features of both small-world and scale-free networks, that is, it
clusters and has hubs; but neither of these models in isolation can fully
explain it. Interestingly, the connection strengths at both cortico-cortical
and whole-brain levels show lognormal distributions, that is, long-tailed
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Figure 5 | Topography of cortico-
striatal and cortico-thalamic
projections. a, Cortical domains in
the cortex flat-map. Each circle
represents one of 80 cortical injection
experiments, whose location is
obtained via multidimensional
scaling from 3D to allow
visualization of all the sites in one 2D
plane. The size of the circle is
proportional to the injection volume.
Clustered groups from Extended
Data Fig. 8b are systematically
colour-coded. The selected injections
for b are marked with a black outline.
b, For co-visualization, voxel
densities from the 21 selected
injections from a are overlaid as
‘dotograms’ at 8 coronal levels for
ipsilateral hemisphere. For the
dotogram, one circle, whose size is
proportional to the projection
strength, is drawn for each injection
in each voxel; the circles are sorted so
that the largest is at the back and the
smallest at the front, and are partially
offset as a spiral. c, Enlarged view
of the dotogram from the area
outlined by a white box in b. d, 3D
tractography paths in both cortical
hemispheres. e, A medial view of
3D tractography paths into the
ipsilateral caudoputamen. Voxel
starting points are represented as
filled circles and injection site end
points as open circles. f, A top-down
view of 3D tractography paths into
the ipsilateral thalamus.
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distributions with small numbers of strong connections and large num-
bers of weak connections. In connections among isocortex, striatum and
thalamus, clustering analysis and virtual tractography recapitulate ana-
tomical parcellation and topography of functional domains and pro-
jection pathways (Fig. 5). The extensive reciprocal connections between
isocortex and thalamus (Fig. 6) further illustrate general principles of
network segregation and integration.

Our Connectivity Atlas represents a first systematic step towards
the full understanding of the complex connectivity in the mammalian
brain. Through the process, limitations of the current approach and
opportunities for future improvement can be identified. On the tech-
nical side, any potential new connections identified in the Phase I data
set (which does not yet have extensive redundancy in regional coverage)
will need to be confirmed with more data. Also, we cannot exclude the
possibility that the AAV tracer we chose to use (with the specific pro-
moter and serotype) may not be completely unbiased in labelling all neur-
onal types. The connectivity matrix has been shown to contain false
positive signals (Extended Data Fig. 7), mainly due to tissue and imag-
ing artefacts and injection tract contaminations. The connectivity matrix
based on cytoplasmic EGFP labelling does not distinguish passing fibres
from terminal zones, and examination of raw images is needed to help
with such distinction, using features such as ramification of axon fibres,
and boutons or enlargements in axons. The Atlas could also be enhanced
in the future with more systematic mapping using synaptic-terminal-
specific viral tracers as shown (Extended Data Fig. 6). Regarding signal
quantification, we chose to use projection volume (sum of segmented
pixel counts) over projection fluorescence intensity (sum of segmented
pixel intensity), because we found the former more reliable and less
variable across different brains (even after normalization). However,
the use of projection volume will probably underestimate the strength
of dense projections. Thus, the true range of projection strengths may
go beyond the 105-fold reported here. Finally, we observed that the
alignment between the average template brain and our existing Reference
Atlas model (which was drawn upon Nissl sections) is not perfect, which

leads to a degree of registration imprecision that could affect the accu-
racy of the quantitative connectivity matrices. Our work shows the need
to generate a new reference model based on a realistic 3D brain, such as
the average template brain presented here. Our data set can also help
this by adding connectivity information to improve anatomical deli-
neations previously defined solely by cyto- and chemoarchitecture.

Beyond the above technical issues, identities of the postsynaptic neu-
rons at the receiving end of the mapped connections are not labelled
and therefore unknown. Microscale, synaptic-level details are missing,
and electrical connections through gap junctions are not revealed. More-
over, our mesoscale connectome provides a static, structural connecti-
vity map, which is necessary but insufficient for understanding function.
Moving from here to functional connectivity and circuit dynamics in
a living brain will require fundamentally different approaches41. One
important aspect concerns the types of synapses present in each conne-
ctional path, as determined by their neurotransmitter contents and their
physiological properties. Anatomical connection strength (for example,
numbers of axon fibres and boutons) needs to be combined with phy-
siological connection properties (for example, excitatory vs inhibitory
types of synapses, fast vs slow neurotransmission, and the specific strength
and plasticity of each synapse) to yield a true functional connection strength.

With the goal of bridging structural connectivity and circuit func-
tion41, we have taken a genetic approach, using AAV viral tracers that
express EGFP in either a pan-neuronal or cell-type-specific manner.
The same neural networks mapped here can be further investigated by
similar viral vectors expressing tools for activity monitoring (for example,
genetically encoded calcium indicators) and activity manipulation (for
example, channelrhodopsins)16. Furthermore, our ongoing efforts of Cre-
driver dependent tracing will allow more specific connectivity mapping
from discrete areas and specific functional cell types. Such cell-type-
specific connectivity mapping is perhaps the greatest advantage of the
genetic tracing approach, allowing dissection of differential projection
patterns from different neuronal types that are often intermingled in
the same region. The genetic tracing approach can be further extended
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* *
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Figure 6 | A wiring diagram of
connections between major cortical
regions and thalamic nuclei. Upper
and lower panels show projections
from cortex to thalamus or from
thalamus to cortex, respectively
(ipsilateral projections only). Colour
coding of different cortical regions
and their corresponding thalamic
nuclei is similar to the flat-map
cortex in Fig. 5a. Thickness of the
arrows indicates projection strength,
which is shown in three levels as
in Extended Data Fig. 10 and
corresponds roughly to the red,
orange and yellow colours in the raw
connectivity matrix (Fig. 3). LGv
and PF do not have significant
projections to cortex. The reticular
nucleus of the thalamus (RT) (the
dashed box) is placed in between
cortex and thalamus to illustrate its
special role as a relay nucleus which
all cortico-thalamic and thalamo-
cortical projections pass through and
make collateral projections into.
The asterisks indicate that cortico-
thalamic and thalamo-cortical
projections in the gustatory/visceral
pathway are between GU/VISC
cortical areas and VPMpc/VPLpc
nuclei (instead of VPM/VPL). See
Supplementary Table 1 for the full
name of each region.
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into identification of inter-connected pre- and postsynaptic cell types
and individual cells, using approaches such as retrograde or antero-
grade trans-synaptic tracing42–44. Our approach can also be applied
to animal models of human brain diseases and the connectivity data
generated here can be instructive to human connectome studies, which
will help to further our understanding of human brain connectivity
and its involvement in brain disorders.

METHODS SUMMARY
C57BL/6J male mice at age P56 were injected with EGFP-expressing AAV using
iontophoresis by the stereotaxic method. The brains were scanned using the STP
tomography systems. Images were subject to data quality control and all the injec-
tion sites were manually annotated. All the image sets were co-registered into the
3D reference space. EGFP-positive signals were segmented from background, and
binned at voxel levels for quantitative analyses. The raw connectivity data are served
with various navigation tools on the web through the Allen Institute’s data portal.
See the full Methods section for detailed descriptions.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
All experimental procedures related to the use of mice were approved by the
Institutional Animal Care and Use Committee of the Allen Institute for Brain
Science, in accordance with NIH guidelines.
Outline of the Connectivity Atlas data generation and processing pipeline. A
standardized data generation and processing platform was established (Fig. 1a).
Viral tracers were validated and experimental conditions were established through
pre-pipeline activities. C57BL/6J mice at age P56 were injected with viral tracers
using iontophoresis by the stereotaxic method. Six STP tomography systems gen-
erated high-resolution images from up to 6 brains per day. Images were subject to
data quality control and all the injection sites annotated. A stack of qualified 2D
images then underwent a series of informatics processes. The image data and infor-
matics products as well as all metadata are stored, retrieved and maintained using
our laboratory information management system (LIMS). The generated connec-
tivity data are served with various navigation tools on the web through the Allen
Institute’s data portal along with other supporting data sets.
Stereotaxic injections of AAV using iontophoresis. Recombinant adeno-associated
virus (AAV) expressing EGFP was chosen as the anterograde tracer to map axonal
projections because of several advantages over conventional neuroanatomical tracers19.
First, AAV mediates robust fluorescent labelling of the soma and processes of infected
neurons, which can be coupled with direct imaging methods for high-throughput
production without additional histochemical staining steps. Second, compared to
conventional tracers which often have mixed anterograde and retrograde trans-
port, retrograde labelling with AAV (except for certain serotypes) is generally negligible.
In this study, retrogradely infected cells were seen only rarely. Notable exceptions
are found in specific circuits that might have certain types of strong presynaptic
inputs, such as the entorhinal cortex projection to hippocampal subregions dentate
gyrus and CA1, where retrogradely infected input cells can be brightly labelled.
Finally, perhaps the greatest advantage of using AAV over conventional tracers is
the flexible molecular strategies that can be used to introduce various transgenes
and to label specific neuronal populations by combining cell-type-selective Cre
driver mice with AAV vectors harbouring a Cre-dependent expression cassette.

To optimize the tracing approach for the large-scale atlas data generation, we
tested various AAV constructs, serotypes and injection methods. We selected
AAV vectors that express EGFP at the highest levels. We found that AAV serotype
1 produces the most robust and uniform neuronal tropism and that iontophoretic
delivery of AAV gives rise to the most consistent and confined viral infection volume.
Thus, the entire atlas data generation was standardized with the use of AAV
serotype 1 and iontophoresis for stereotaxic injections20.

Stereotaxic coordinates were chosen for each target area based on The Mouse
Brain in Stereotaxic Coordinates45. For the majority of target sites, the anterior/
posterior (AP) coordinates are referenced from Bregma, the medial/lateral (ML)
coordinates are distance from midline at Bregma, and the dorsal/ventral (DV)
coordinates are measured from the pial surface of the brain. For several of the
most caudal medullary nuclei (for example, gracile nucleus and spinal nucleus of
the trigeminal, caudal part), the calamus (at the floor of the fourth ventricle) is
used as a registration point instead of Bregma. For many cortical areas, injections
were made at two depths to label neurons throughout all six cortical layers and/or
at an angle to infect neurons along the same cortical column. For laterally located
cortical areas (for example, orbital area, medial part; prelimbic area; agranular insular
area), the injections were made at two adjacent ML coordinates for the same reason,
since the pipette angle required for injection along the cortical column is nearly
90u, beyond our technical limit. The stereotaxic coordinates used for generating
data are listed under the Documentation tab in the data portal.

Adult male C57BL/6J mice (stock no. 00064, The Jackson Laboratory, Bar Harbour,
ME) were used for AAV tracer (AAV2/1.pSynI.EGFP.WPRE.bGH, Penn Vector
Core, Philadelphia, PA) injections at P56 6 2 postnatal days. Mice were anaesthe-
tized with 5% isoflurane and placed into a stereotaxic frame (model no. 1900, David
Kopf Instruments, Tujunga, CA). For all injections using Bregma as a registration
point, an incision was made to expose the skull and Bregma and Lambda land-
marks were visualized using a stereomicroscope. A hole overlying the targeted area
was made by first thinning the skull using a fine drill burr until only a thin layer of
bone remained. A microprobe and fine forceps were used to peel away this final
layer of bone to reveal the brain surface. For targeting caudal nuclei in the medulla,
ketamine-anaesthetized mice were placed in the stereotaxic frame with the nose
pointed downward at a 45–60 degree angle. An incision was made in the skin at the
base of the skull and muscles were bluntly dissected to reveal the posterior atlanto-
occipital membrane overlying the surface of the medulla. A needle was used to
puncture the membrane and the calamus was visualized.

All mice received one unilateral injection into a single target region in the right
hemisphere. Glass pipettes had inner tip diameters of 10–20mm. The majority of
injections were done using iontophoresis with 3 mA at 7 s ‘on’ and 7 s ‘off’ cycles

for 5 min total. These settings resulted in infection areas of approximately 400–
1,000mm in diameter, depending on target region. Reducing the current strength
to 1mA decreased the area of infected neurons, and was used when 3 mA currents
produced infection areas larger than ,700mm. Mice quickly recovered after sur-
gery and survived for 21 days before euthanasia. Injection sites ranged from 0.002
to 1.359 mm3 in volume, with an average size of 0.24 mm3 across all 469 data sets.
Serial two-photon tomography. Mice were perfused with 4% paraformaldehyde
(PFA). Brains were dissected and post-fixed in 4% PFA at room temperature for
3–6 h and then overnight at 4 uC. Brains were then rinsed briefly with PBS and
stored in PBS with 0.1% sodium azide before proceeding to the next step. Agarose
was used to embed the brain in a semisolid matrix for serial imaging. After remov-
ing residual moisture on the surface with a Kimwipe, the brain was placed in a 4.5%
oxidized agarose solution made by stirring 10 mM NaIO4 in agarose, transferred
through phosphate buffer and embedded in a grid-lined embedding mould to
standardize its placement in an aligned coordinate space. The agarose block was
then left at room temperature for 20 min to allow solidification. Covalent interac-
tions between brain tissue and agarose were promoted by placing the solidified
block in 0.5% sodium borohydride in 0.5 M sodium borate buffer (pH 9.0) over-
night at 4 uC. The agarose block was then mounted on a 1 3 3 glass slide using
Loctite 404 glue and prepared immediately for serial imaging.

Image acquisition was accomplished through serial two-photon (STP) tomo-
graphy22 using six TissueCyte 1000 systems (TissueVision, Cambridge, MA) coupled
with Mai Tai HP DeepSee lasers (Spectra Physics, Santa Clara, CA). The mounted
specimen was fixed through a magnet to the metal plate in the centre of the cutting
bath filled with degassed, room-temperature PBS with 0.1% sodium azide. A new
blade was used for each brain on the vibratome and aligned to be parallel to the
leading edge of the specimen block. Brains were imaged from the caudal end. We
optimized the imaging conditions for both high-throughput data acquisition and
detection of single axon fibres throughout the brain with high resolution and
maximal sensitivity. The specimen was illuminated with 925 nm wavelength light
through a Zeiss 320 water immersion objective (NA 5 1.0), with 250 mW light
power at objective. The two-photon images for red, green and blue channels were
taken at 75mm below the cutting surface. This depth was found optimal as it is deep
enough to avoid any major groove on the cutting surface caused by vibratome section-
ing but shallow enough to retain sufficient photons for high contrast images. In
order to scan a full tissue section, individual tile images were acquired, and the
entire stage was moved between each tile. After an entire section was imaged, the x
and y stages moved the specimen to the vibratome, which cut a 100-mm section,
and returned the specimen to the objective for imaging of the next plane. The blade
vibrated at 60 Hz and the stage moved towards the blade at 0.5 mm per sec during
cutting. Images from 140 sections were collected to cover the full range of mouse
brain. It takes about 18.5 h to image a brain at an x,y resolution of ,0.35mm per
pixel, amounting to ,750 GB worth of images per brain. Upon completion of
imaging, sections were retrieved from the cutting bath and stored in PBS with 0.1%
sodium azide at 4 uC.
Image data processing. The informatics data pipeline (IDP)46 manages the pro-
cessing and organization of the image and quantified data for analysis and display
in the web application. The two key algorithms are signal detection and image
registration.

The signal detection algorithm was applied to each image to segment positive
fluorescent signals from background. Image intensity was first rescaled by square
root transform to remove second-order effects followed by histogram matching at
the midpoint to a template profile. Median filtering and large kernel low pass filter
was then applied to remove noise. Signal detection on the processed image was
based on a combination of adaptive edge/line detection and morphological pro-
cessing. High-threshold edge information was combined with spatial distance-
conditioned low-threshold edge results to form candidate signal object sets. The
candidate objects were then filtered based on their morphological attributes such
as length and area using connected component labelling. In addition, high intens-
ity pixels near the detected objects were included into the signal pixel set. In a
post-segmentation step, detected objects near hyper-intense artefacts occurring
in multiple channels were removed. It should be noted that passing fibres and
terminals are not distinguished. The output is a full resolution mask that classifies
each 0.35mm 3 0.35mm pixel as either signal or background. Isotropic 3D sum-
mary of each brain is constructed by dividing each image into 100mm 3 100mm
grid voxels. Total signal is computed for each voxel by summing the number of
signal-positive pixels in that voxel.

The highly aligned nature from section to section throughout a single brain allowed
us to simply stack the section images together to form a coherent reconstructed 3D
volume. Each image stack was then registered to the 3D Allen Reference Atlas model.
To avoid possible bias introduced by using a single specimen as template and to
increase the convergence rate of the registration algorithm, a registration template
was created by iteratively averaging 1,231 registered and resliced brain specimens.
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A global affine (linear) registration to the template was first performed using a com-
bination of image moments and maximizing normalized mutual information be-
tween the red channel of the image stack and the template using a multi-resolution
gradient descent optimization. A B-spline based deformable registration was then
applied using a coarse-to-fine strategy through four resolution levels with decreas-
ing smoothness constraints. In each generation, a new template was created using
the previous generation results to further improve registration convergence. The
template was then deformably registered to the 3D reference model by maximizing
the mutual information of large structure annotation and the template intensity.

Segmentation and registration results are combined to quantify signal for each
100mm 3 100mm 3 100mm voxel in the reference space and for each structure in
the ontology by combining voxels from the same structure in the 3D reference
model. To generate the raw connectivity matrix (Fig. 3), the projection signal was
quantified by summing the number of segmented pixels in every voxel, and
scaling this value to a mm3 volume. The voxel values within each of the 469
injection sites (source) or each of the 295 target sites in either hemisphere were
binned and summed based on which structure the voxel belongs to. The target
structure values presented across the columns are normalized by each experiment’s
injection volume to allow comparison between injections. Fluorescent signals within
each injection area were excluded from projection signal calculation.

The informatics data processing supports key features in the web application,
including an interactive projection summary graph for each specimen, an image
synchronization feature to browse images from multiple injections, reference
atlases and other data set in a coordinated way, and on-the-fly search services to
search for a specimen with specific projection profiles. Further details of the pipeline
processing and web application features are described under the documentation
tab in the data portal.
Quality control, injection site annotation and polygon drawing. A rigorous
manual quality control protocol was established which includes identification of
the injection structure(s) according to the Allen Reference Atlas ontology, delin-
eation of the injection site location and decisions on failing an experiment due to
production issues affecting specimen and image quality. Severe artefacts such as
missing tissue or sections, poor orientation, edge cutoff, tessellation and low signal
strength lead to elimination of the entire image series. In some cases, the quality
control process extended to identification and masking of areas of high intensity/
high frequency artefacts and areas of signal dropout. This information is used in
downstream search and analysis to reduce false positive and false negative returns.

For each passed image series, the anatomical location(s) of injection site was
annotated based on the Allen Reference Atlas23 and The Mouse Brain in Stereotaxic
Coordinates45. If an injection has hit multiple structures, the structure containing
the majority of the tracer is named as the primary injection structure, and any other
structures containing tracer-infected neurons are considered secondary injection
structures. Polygons were manually drawn overlaying the cell bodies of infected
neurons for each passed injection with an electronic region of interest for ease of
injection site location by the end user, and further informatics processing. After
data registration into the 3D reference space, injection sites were also annotated
computationally. In most cases, results obtained from manual and informatics anno-
tations are the same. The manually derived primary and secondary injection struc-
tures are provided as search entries for the Atlas, while the computationally derived
sites are available on the projection summary page for each experiment.
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Extended Data Figure 1 | AAV/BDA tracer comparison, using a primary
motor cortex (MOp) injection as an example. The cortical and subcortical
projections from MOp injection are labelled similarly with the AAV tracer
(green) and conventional tracer BDA (red). a, Injection sites of AAV and BDA
are mostly overlapping (yellow), with a blue DAPI counterstain. b, Confocal
image taken from the box in a shows BDA tracer uptake in individual neurons
at the injection site. b’, The same box in a shows AAV infection of individual
neurons. b’’, Overlay of b and b’ shows the presence of both tracers in the same
region and their colocalization in some neurons (yellow). c–f, Examples of
cortical projections in the contralateral primary motor cortex, ipsilateral
primary somatosensory cortex, agranular insular area (dorsal part), and
perirhinal cortex labelled with red, green, or yellow. g–n, Examples of
subcortical projections in the ipsilateral ventral posterolateral nucleus of the
thalamus and posterior nucleus of the thalamus, superior colliculus, pontine

grey, caudate putamen, zona incerta and subthalamic nucleus, midbrain
reticular nucleus, parabrachial nucleus, and contralateral bed nucleus of the
anterior commissure. Scale bars are 1,000mm (a); 100 mm in (b, b’ and b’’); and
258mm (c–n). Approximately 18 brain regions were selected throughout the
brain to represent broad anatomical areas and diverse cell types (3 cortical and
15 subcortical structures). AAV and BDA were co-injected into each selected
brain region in wild-type mice using a sequential injection method developed to
target virtually the same anatomical region. For most cases, the anatomical
area(s) of tracer uptake are well matched. We found the long-range projections
from all studied regions with both tracers. Their patterns were similar between
the two tracers in mostly overlapped injection cases. There were more
retrogradely labelled neurons with BDA than AAV, although a few retrograde
neurons were observed in all studied regions with both tracers. BDA was clearly
uptaken by passing fibres in some injections but AAV was not.
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Extended Data Figure 2 | Consistency among individual STP tomography
image sets. a, High-resolution images of 140 serial sections of a single brain are
shown as an example (injection into the primary visual area). The injection site
and major projection targets can be easily observed in this ‘contact-sheet’ view.
b, Registration variability study. A set of ten 3D fiducial points of interest
(POIs) were manually identified on the Nissl 3D reference space, the average
template brain, and in 30 randomly selected individual image sets by three
raters independently. The POIs were selected such that they span the brain
and can be easily and repeatedly identified in 3D. Each POI (p) from each
experiment was then projected into 3D reference space (p’) using the transform
parameters computed by the Alignment module. Statistics were gathered on the
target registration error between p’ and its ‘gold standard’ correspondence
(computed as the mean of the labelling of 3 raters) in the Nissl (pNissl) and
template (ptemplate) volumes. In summary, for all POIs in template space, the
observed median variation in each direction are 28mm for left-right, 35mm for
inferior-superior, and 49mm for anterior-posterior. In Nissl space, these

observed median variations are 42, 71 and 60mm, respectively. The registration
variations in different directions are shown here. For each POI, the green dot
shows the position in template space (ptemplate) and the red dot shows the
position in Nissl space (pNissl). The small yellow bar shows the median
variation (among 30 image sets) away from ptemplate in each direction. POIs:
AP: area postrema, midline; MM: medial mammillary nucleus, midline; cc1:
corpus callosum, midline; cc2: corpus callosum, midline; acoL, acoR: anterior
commisure, olfactory limb; arbL, arbR: arbor vitae; DGsgL, DGsgR: dentate
gyrus, granule cell layer. c, Percent agreement between computationally
assigned injection site voxels and manually assigned injection structures. Each
histogram data point corresponds to a single injection, and 100% indicates that
every injection site voxel was computationally assigned to a structure included
on the manually annotated injection structures list. Voxels which were
computationallyassigned to fibre tracts or ventricles are excluded from the
computation. Neither fibre tracts nor ventricles were incorporated into the manual
annotation process; their exclusion allows for a more commensurate comparison.
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Extended Data Figure 3 | Distribution of injection sites across the brain.
a, Locations of injection spheres within 12 major brain subdivisions are shown
as a projection onto the mouse brain in sagittal views. n 5 108 isocortex, 23
olfactory areas (OLF), 42 hippocampal formation (HPF), 8 cortical subplate
(CTXsp), 38 striatum (STR), 9 pallidum (PAL), 57 thalamus (TH), 47
hypothalamus (HY), 50 midbrain (MB), 21 pons (P), 45 medulla (MY) and 21
cerebellum (CB). b, Frequency histogram for the injection site volumes of all
469 data sets is shown. c, The Allen Reference Ontology was collapsed into 295
non-overlapping, unique, anatomical structures for analyses, distributed across
major brain subdivisions as shown (black bars). For most structures, a single
injection was sufficient to infect the majority of neurons in that region. For

larger structures (for example, primary motor cortex), multiple injections were
made into several, spatially separate locations. The majority of these 295
regions have at least one injection targeted to that structure as either the
primary or secondary injection site (white bars); only 18 structures are not
covered at all (grey bars, for details see Supplementary Table 1). These missed
structures (minimal to no infected cells in either the primary or secondary
injection sites) were either very small (for example, nucleus y in the medulla),
purposefully left out due to the presence of other injections under the same
large parent structure (for example, four of the cerebellar cortex lobules), or
technically challenging to reach via stereotaxic injection (for example,
suprachiasmatic nucleus).
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Extended Data Figure 4 | Distribution of whole brain projections from
different cortical source areas. Pie charts show the percentage of total
projection volume across all voxels outside of the injection site distributed in
the 12 major brain subdivisions from both hemispheres. Each pie chart
represents the average of 4 to 27 cortical injections grouped by the broad
regions listed. A pie chart key of the volume distribution (number of voxels per
structure/total number of voxels per brain) of these 12 subdivisions is at the
bottom right for comparison. The largest projection signal from each cortical
injection is found within isocortex (range of 45.4–69.8% of projection signals

depending on source region, with an average of 59% for all cortical injections),
although the isocortex accounts for only 30.2% of total brain volume.
Differences in the subcortical distribution of relative signal strength between
cortical sources were also observed. For example, within the striatum (light
blue), the percentage of total signal is low from auditory, retrosplenial and
visual areas (6.2%, 3.4% and 7.6%, respectively), but much greater from frontal,
motor, cingulate and somatosensory areas (16.5%, 27.7%, 20.3% and 17.6%,
respectively).
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Extended Data Figure 5 | Variability of brain-wide projection signal
strength. To examine animal-to-animal variability in projection patterns,
12 sources with two spatially overlapping injection experiments were identified
from the full data set of tracer injections shown in Fig. 3. a, Rows show
segmented projection volumes normalized to the injection volume
(log10-transformed) in the 295 ipsilateral target regions for each of 2 individual
overlapping tracer injections per source region indicated (above and below
solid black line). The colour map is as shown in Fig. 3. b, Maximal density
projections of whole brain signals from each of the two spatially overlapping
injection experiments per source region visibly demonstrate consistency of
brain-wide connections. Scatter plots of all ipsilateral and contralateral target
structure values above a minimum threshold in both members of the pair
(log10 5 23.5; non-blue values from a) show significant correlations between
each pair of injections across a four orders of magnitude range of projection

strengths. Values in the scatter plots are Pearson’s correlation coefficients (r).
Note that in some cases (for example, PTLp) axon pathways appear to be
labelled in only one of the pair. This could be due to random differences in the
proportion of corticospinal projecting neurons labelled in a particular injection
within the same source area. Signal in large annotated white matter tracts
are computationally removed from the connectivity matrix, and thus not
included in the scatter plots. c, Detected fluorescent signals from each of two
injections into the same location of primary somatosensory cortex registered
and overlaid with the average template brain (grey). Lower 2 rows, 2D raw
images from each injection experiment at different anterior-posterior levels.
The centres of these injection sites are in the far left panel and their major
targets are in the right panels. See Supplementary Table 1 for the corresponding
full name and acronym for each region.
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Extended Data Figure 6 | Cytoplasmic EGFP and synaptophysin-EGFP
AAV tracer comparison, using primary motor cortex (MOp) injections as
an example. a–f, Two-photon images showing an example of the labelling
obtained using the Phase I virus for whole-brain projection mapping, which
consists of a human Synapsin I promoter driving expression of EGFP. g–l, To
compare cytoplasmic labelling of projections and identification of terminal
regions with a presynaptic reporter virus, we made a construct with the same
hSynapsin promoter driving expression of a triple reporter cassette (AAV2/
1.pSynI.nls-hrGFP-T2A-tagRFP-T2A-sypGFP.WPRE.bGH): a nuclear
localization signal attached to humanized Renilla GFP (nls-hrGFP), a T2A
sequence followed by cytoplasmic tagRFP, a second T2A sequence, and the
synaptophysin-EGFP fusion (sypGFP). Owing to the two-photon imaging
wavelength used (925 nm), the tagRFP (red) signal is weak to non-existent in
these images. a, g, An image at the centre of the infected area after injection into
the same region of MOp with the Phase I cytoplasmic viral tracer (a) and
the nuclear and synaptic reporter viral tracer (g). Examples of viral labelling in
the caudoputamen (b, h), somatosensory cortex (c, i), thalamus (d, j), pontine
grey (e, k) and inferior olivary complex in the medulla (f, l) are shown for
both tracers. The cytoplasmic viral tracer labels axons, revealing dense
branching patterns in presumed terminal zones. The presynaptic reporter
virus predominantly shows a punctate pattern of labelling consistent with
presynaptic protein expression patterns, and indicative of terminal zones.

Punctate or diffuse labelling was observed with the synaptic reporter virus in
nearly all MOp target regions manually and computationally identified using
the cytoplasmic reporter, including those with both large and small signals.
Fluorescent signal originating in fibres outside of large white matter tracts are
included in the signal quantification and matrix shown in Fig. 3, but signals
from these large annotated fibre tracts are computationally removed.
m–p, High-resolution images of terminal zones in the somatosensory cortex
(m) and thalamus (o) identified using the cytoplasmic viral tracer show axon
ramification and punctate structures consistent with bouton labelling,
similar to the synaptic reporter in the corresponding regions (n, p).
q–r’, To validate the presynaptic expression of the sypGFP fusion protein,
sections including and adjacent to the thalamic region shown in j were collected
after two-photon imaging and immunostained with antibodies against GFP
(chicken polyclonal 1:500, Aves Labs, Inc. #GFP-1020) and synapsin I
(rabbit polyclonal, 1:200, Millipore, #AB1543P) or GFP (rabbit polyclonal,
Life Technologies, #A-11122) and SV2 (mouse monoclonal, DSHB,
SV2-supernatant) presynaptic proteins. q, r, Confocal images at a single plane
show punctate labelling indicative of presynaptic boutons for both sypGFP and
synapsin or SV2. Many puncta were colocalized (yellow arrows show select
examples in q’ and r’), although quantification was not reliable due to the very
high density of presynaptic labelling by anti-Synapsin and anti-SV2.
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Extended Data Figure 7 | Distribution of log10-transformed normalized
projection volumes from the entire matrix presented in Fig. 3. The values
(left-hand y axis, black bars) were number of target regions and derived
from Supplementary Table 2. The entire range of the normalized projection
volumes in this matrix was between log10 5 214 and log10 5 1.5, and it peaked
between log10 5 23.5 and log10 5 23.0. A manual analysis of true positive and
true negative signals from 20 randomly chosen injection experiments,
representing the range of injection sizes, was used to estimate the false positive
rate at different threshold levels, shown on the right-hand y axis (grey circles).
True positive values predominantly fall within the range of log10 5 24 to 1.5.
For example, at a threshold of log10 5 24, the false positive rate was 27%,
dropping to 14.5% at log10 5 23.5. False positives were almost exclusively due
to small segmentation artefacts in areas without actual fluorescently labelled
axon fibres.
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Extended Data Figure 8 | Cortical domains identified by clustering analysis
of projection patterns. Eighty injections were used in the analysis for which
the injection site is strictly within the isocortex and injection volume
.0.07 mm3. a, Scatter plot of the voxel densities (excluding injection sites) of
the whole brains from two nearby anterior cingulate injections (ACAd and
ACAv) shows a strong correlation between the two (Spearman’s r5 0.82),
whereas that of two distant injections (ACAd and SSp-m) shows little
correlation (r5 20.03). b, Hierarchical clustering of the projection pattern
based on Spearman’s rank correlation coefficient of voxel density over the

entire brain. The pseudo-F statistics measures the coherence of clusters and is
the ratio of mean sum of squares between groups to the mean sum of squares
within group. Peaks in the pseudo-F statistics (for example, at n 5 3, 8 and 21
clusters) are indicators of greater cluster separation. For n 5 21 clusters, a
systematic colour-code is given to each cluster to provide a visual guide to their
cortical location (Fig. 5a), the numbers in parentheses indicate the number of
injections in each group. c, Voxel densities from the 21 selected injections from
Fig. 5a are overlaid as ‘dotograms’ at 8 coronal levels for the contralateral
hemisphere.
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Extended Data Figure 9 | Topography of cortico-striatal and cortico-
thalamic projections. Average inter-group distance was used to quantify the
degree of which inter-group spatial relationship within the cortex is preserved
in target domains. a, Inter-group injection distances were obtained by
computing the 3D Euclidean distances between injection site voxels of two
experiments, one from each group, and then averaging over all injection pairs.
For visualization, the distances are embedded into a 2D plane using
multidimensional scaling to create a group-level injection flat-map. b, Inter-
group projection distances were obtained by computing the 3D Euclidean
distance between a pair of voxels in a target domain weighted by the product of
voxel density of two injections, one from each group. The distances are then
averaged over all voxel pairs in the target domain and injection pairs between
groups. c, Inter-group projection distance matrices for each target domain

visualized as false-coloured heatmaps. The black columns and rows in
contralateral caudoputamen and thalamus are due to four missing structures.
d, Inter-group projection distances are embedded into a 2D plane using multi-
dimensional scaling to visualize the spatial relationship between groups. e, 3D
tractography paths from decimated (every other indices in each dimension)
voxels in both cortical hemispheres. Voxels belonging to the medial cortical
groups have been omitted to reveal a reconstructed corpus callosum showing
parallel crossings with a conserved spatial configuration. f, A top-down view of
3D tractography paths into the ipsilateral thalamus for all voxels excluding the
RSP/VIS groups showing axonal projections passing through fibre tracts in
the striatum, narrowing through the globus pallidus, before spreading
throughout the thalamus.
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Extended Data Figure 10 | A matrix of major connections between
functionally distinct cortical regions and thalamic nuclei, corresponding
to Fig. 6. Upper and lower panels show projections from cortex (source) to
thalamus (target) or from thalamus (source) to cortex (target), respectively
(ipsilateral projections only). The label ‘pc’ indicates that cortico-thalamic and
thalamo-cortical projections in the gustatory/visceral pathway are between
GU/VISC cortical areas and VPMpc/VPLpc nuclei. The number of pluses
denotes relative connectivity strength and corresponds to the thickness of
arrows in Fig. 6. All the connections described here were found in our data set.
Connections labelled in red are previously known, whereas those labelled in
black are not previously described in the rodent literature to our knowledge.
There are also cases in which a connection was described in the literature but is
excluded here because we could not find solid evidence in our data set to
support it. All references that we have used to compare with our data are
listed33,39,47–127. Specifically, the cortico-thalamic system can be divided into six
functional pathways: visual, somatosensory, auditory, motor, limbic and
prefrontal. The visual pathway is composed of primary and associational visual
cortical areas (VISp, VISam, VISal/l, and TEa) and thalamic nuclei LGd, LGv,
and LP100,103,109, with LGd and VISp playing primary roles in processing
incoming visual sensory information, visual associational areas involved in
higher-order information processing and LP potentially modulating the
function of all visual cortical areas (thus similar to the pulvinar in primates).
LGv does not project back to cortex. Similarly, the somatosensory pathway is
composed of primary and secondary somatosensory cortical areas (SSp and
SSs) and thalamic nuclei VPM, VPL and PO48,74, with SSp and VPM/VPL
playing primary roles in processing incoming somatosensory information, SSs
in higher-order information processing and PO modulating the function of all
somatosensory cortical areas. The gustatory and visceral pathway (involving
GU/VISC cortical areas and VPMpc/VPLpc nuclei)55,108 and the auditory
pathway (involving primary and secondary AUD areas and different MG

nuclei)82,98 also have similar organizations, although our current data do not
have sufficient resolution to resolve fine details. The motor pathway is
composed of primary and secondary motor cortical areas (MOp and MOs) and
the VAL nucleus92,94. The limbic pathway (which is closely integrated with the
hippocampal formation system not discussed here) is composed of the
retrosplenial (RSP) and anterior cingulate (ACA) cortical areas and thalamic
nuclei AV, AD and LD107,114. The prefrontal pathway, which is considered to
play major roles in cognitive and executive functions, is composed of the
medial, orbital and lateral prefrontal cortical areas (including PL, ILA, ORB and
AI) and many of the medial, midline, and intralaminar nuclei of the thalamus
(including MD, VM, AM, PVT, CM, RH, RE and PF)111. The reticular nucleus
(RT) is unique in that it is a relay nucleus for all these pathways, receiving
collaterals from both cortico-thalamic and thalamo-cortical projections
although itself only projecting within the thalamus. Between these pathways,
we have observed cross-talks, mediated by specific associational cortical areas
and thalamic nuclei that may be considered to play integrative functions.
For example, the anterior cingulate cortex (ACA) appears to bridge the
prefrontal and the limbic pathways, interconnecting extensively with both. The
posterior parietal cortex (PTLp) and the LD nucleus may relay information
between the visual and the limbic pathways. PTLp, while hardly receiving
any inputs from the thalamus, projects strongly to both LP and LD. On the
other hand, LD, while projecting quite exclusively to the limbic cortical areas,
receives strong projections from all visual cortical areas. There is also extensive
cross-talk between the motor pathway and the prefrontal pathway, with
both MOp and MOs receiving strong inputs from VM and sending strong
projections to MD, and additionally with MOs projecting widely into many
medial, midline and intralaminar nuclei. Finally, the thalamic nuclei PO, VM,
CM, RH and RE all send out widely distributed, albeit weak, projections to
many cortical areas in different pathways, thus potentially capable of
modulating activities in large cortical fields.
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Connectivity Model Description:  
 
To construct a matrix describing the strength of connection between 213 projection regions 
approximately tiling the entire brain and defined within the Allen Reference Atlas, we fit a linear 
connectivity model via constrained optimization, and linear regression.   
 
Figure 4a depicts the connectivity matrix associated with a model of the form: 
 

min௪,ೊஹ
ඩቌ ,ݓ
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that best fits the data given by the injections in the set ܵா. Here ܵ is the set of 213 source 
regions ܺ that project into the target region ܻ, with normalized connection strength ݓ,. ܧ is 
the set of all voxels containing neurons infected on the ݅௧ injection. The segmented projection 
volume in an area ܺ is computed by integrating the per-voxel projection density ܲܦ (fraction of 
segmented pixels) across all voxels ݒ א ܺ: 
 

ܸܲ(ܺ) = නܲ(ݒ)ܦ݀ܺ 

 
 
Intuitively,  ݓ, is a positive or zero number that scales the segmented projection volume in a 
source region ܺ in order to explain the observed segmented projection volume in a target region 
ܻ. For many of the experiments considered, multiple adjacent regions were infected by a single 
injection; it is possible that several of these source regions project to a given target region. The 
connectivity model attempts to disentangle this effect by relying on multiple non-overlapping 
injections to deduce the effective contribution of each region independently. The model that best 
fitted all anatomical data was found through constrained optimization (2-norm) which seeks a 
set of positive linear coefficients ݓ, that minimize the difference of projection target regions 
between the observed values and those generated from the connectivity model. Next, weights 
found to be identically zero were removed, and a multivariate linear regression determined 
confidence intervals and p-values on these positive definite weights. Because the same error 
function is used in both the optimization and the regression, the weights computed by 
regression were identical to those obtained from optimization. 
   
Only experiments with greater than 75% agreement between informatically labeled injection site 
voxels and manual annotation of primary and secondary injection structures were included (i.e. 
452 of the total 469 experiments). The 213 source regions selected for inclusion in the 
connectivity model optimization are a subset of the 295 structures included in the raw data 
connectivity matrix. These regions were selected by simultaneously satisfying 2 criteria: 1) at 
least one injection experiment that infected a minimum of 50 or more voxels in the region, and 
2) using all available data, the selected regions must be “linearly separable” above a predefined 
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precision, i.e. result in a matrix that is well-scaled for linear analysis, as judged by its 
conditioning number ߢ.  The first criterion removes structures that might be too small to be 
informatically aligned during registration, and ensures that there is enough experimental 
evidence to warrant inclusion as a source region; this resulted in a restriction of the original 295 
possible structures to 215 candidate regions.  The second criterion was implemented by a 
greedy algorithm that iteratively added regions to a final list.  After each addition, the 
conditioning number of the resulting matrix (segmented injection volume from each experiment 
down rows, and regions across columns) was computed, and the next region added that 
minimally increased this value.  This recursive algorithm was continued until the conditioning 
number reached a predefined threshold (ߢ = 1000), and resulted in the exclusion of 2 additional 
regions to yield a list of 213 regions subsequently analyzed. All analysis data and code are 
available upon request. The resulting normalized connection strengths and p-values associated 
with the connectivity matrix in Figure 4a are shown in Supplementary Table 3 as a separate 
file.  
 

 
 
Supplementary Fig. 1: Schematic demonstration of two assumptions necessary to fit the linear 
connectivity model.  Under homogeneity, two injections of identical volume into region X result 
in the same fluorescence in a target region, irrespective of the exact position of the injection 
within the source area. This assumption is satisfied if the regions are homogenous, but it is also 
satisfied for topographically organized regions.  Additivity allows the fluorescence observed in a 
target region to be explained by a linear sum of appropriately weighted sources. 
 
In practice, if every neuron projecting from a source region were infected, the resulting 
projection density would saturate the target region.  Our model only requires that a subset of the 
input neurons be infected, so that the measured projection density of the target area is below 
the saturating nonlinearity. This modeling approach gains a decisive advantage by exploiting, 
instead of discarding, experimental data with viral tracer in multiple source regions. Data from 
experiments that infect only a single region can still be utilized in fitting this connectivity model, 
and can effectively determine isolated individual weights. 
 
The most natural interpretation of the connectivity matrix of Figure 4a is as normalized 
connection strength, describing the amount of segmented signal activated in the target region 
by infecting one voxel in the source region. In this sense, it can be thought of as proportional to 
the average out-degree of neurons projecting from the source to the target.  An extrinsic notion 
of connection strength can be obtained by multiplying the normalized connection strength value 
by the size of the source population; we call this the connection strength, and can be interpreted 
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as proportional to the total number of axonal fibers projecting from one area to the other. 
Conversely, an intrinsic notion of connection density can be obtained through division by the 
size of the target population, approximating the fraction of pixels in a voxel of the target region 
segmented resulting from infection of all neurons in a single voxel  of the source region (and 
thus less than 1; normalized connection density). Combining these two operations results in a 
quantity analogous to the fan-in of the source region to the target region, termed connection 
density; this can be interpreted as the fraction of pixels segmented in a target voxel resulting 
from infecting the entire source region. These relationships are summarized in Supplementary 
Figure 2.  
 

 
 
Supplementary Fig. 2: Four notions of inter-region connection strengths. The relative and 
absolute size of source and target populations can have a significant impact on the inter-region 
connection strength. The connectivity model results in connection weights best interpreted as 
normalized connection strength (top-left; see also Fig. 4a). Scaling by the size of the source or 
the target population (or both) can convert between measures.  
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 Whole Model 
(ipsi) 

Whole Model 
(contra) 

Isocortex (ipsi) Isocortex 
(contra) 

Optimization 16,954 (37.4%) 15,868 (35.0%) 773 (53.5%) 729 (50.5%) 

Į� ���� 3,529 (7.8%) 2,772 (6.1%) 339 (23.5%) 304 (21.1%) 

Į� ���� 3,123 (6.9%) 2,451 (5.4%) 306 (21.1%) 273 (18.9%) 

Į� ���� 2,487 (5.5%) 1,979 (4.4%) 250 (17.3%) 220 (15.2%) 

Low bound 14.1% 11.2% 35.4% 30.0% 

Supplementary Table 5: Connection density evaluated after optimization only, and at three 
levels of statistical significance on the regression p-values, for both the whole model and for 
isocortical-to-isocortical projections only.  Fractions are reported out of 45,369 possible whole-
model connections, or 1,444 possible isocortical projections. A low bound for sparsity is 
estimated as ݏ = 1െ  . ۄۃ
 
The connection matrix sparsity (density) can be estimated by using the statistical confidence 
gained from the regression (Supplementary Table 5).  Bounded optimization alone results in 
approximately two-thirds of the possible connections eliminated.  A large proportion of the 
remaining connections have a large p-value associated to them by the subsequent linear 
regression.  In general, cortico-cortical projections are denser than the average density across 
the entire model. For sparsity, a low bound is estimated by interpreting the regression p value 
for a connection to be strictly bigger than zero as the probability of a false positive connection 
ݏ = σ (1െ )ே

ୀଵ /ܰ. This represents a low bound of the sparsity, as the probability of false 
negatives from the optimization cannot be well estimated.  
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Supplementary Fig. 3: Connection strength negatively correlates with distance.  The log of the 
connection strength between two regions linearly correlates with the distance between the 
regions, defined as the Cartesian distance between their centers of mass.  Only inter-region 
connections with  < .05 are included in the linear regression (݈݃ଵݏ = െ0.00854݀ െ 0.793, r = 
-0.22, p < 10-16). The Cartesian distances between the centers of mass of all the interconnected 
source and target region pairs are provided in Supplementary Table 4 as a separate file.  
 
We found that the distribution of whole-brain connection strengths was best fit by a lognormal 
distribution, based on the Akaike Information Criterion (AIC) which penalizes models with more 
degrees of freedom (ipsilateral Akaike Information Criterion, AIC: lognormal: -1595.0, inverse 
Gaussian: -1518.6, exponential: 420.0, normal: 8379.3; lower numbers are more informative), 
and negatively correlated with the distance between the two regions (Supplementary Fig. 3). 
The best fit normal distribution of the log10 transformed weights has the mean (ȝ) and standard 
deviation (ı) of: ipsilateral: ȝ = -0.94, ı = 0.71, contralateral: ȝ = -1.26, ı = 0.68; and for only 
cortico-cortical connections, ipsilateral: ȝ = -0.54, ı = 0.44, contralateral: ȝ = -1.0, ı = 0.53 (Fig. 
4b, red lines). However, after log-transforming the data, the connection distribution failed to 
pass the Shapiro-Wilk test IRU�QRUPDOLW\�DW�Į� �0.05 significance level when including all brain 
regions (ipsilateral: p = 0.039, contralateral: p = 0.023). Because the null hypothesis for this test 
is normality of the distribution, a significant p value shows significant deviations of the 
connection distribution from log-normal. After log-transforming, the additional complexity of a 
two component Gaussian mixture model (GMM) provided an improved ipsilateral distribution: 
AIC is reduced from 6749.8 to 6747.7. Results were similar for the contralateral connection 
distribution AIC is reduced from 5090.2 to 5087.8. In both cases, mixture models with additional 
(>2) components resulted in an increased AIC, and were therefore rejected.  
 
The summary statistics for the GMM models of best fit are provided in Supplementary Table 6. 
Intriguingly, for both ipsilateral and contralateral matrices, one of the mixture components 
resulting from the fit is close to the cortical distribution (ipsilateral: ȝ = -0.54, ı = 0.44, 
contralateral: ȝ = -1.0, ı = 0.53).  This suggests that a mixture of different lognormal 
distributions of connections, resulting from different regions, might combine together to result in 
a non-homogeneous distribution of connection weights across the brain. 
 
 Ipsilateral Contralateral 
 ȝ ı weight ȝ ı weight 

Component 1 -1.33 .62 .48 -1.63 .55 .51 
Component 2 -.57 .58 .52 -.88 .60 .49 

 
Supplementary Table 6: Parameters resulting from fitting the log-transformed data from the 
connectivity weights of each matrix to a 2-component Gaussian mixture model. 
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Supplementary Fig. 4: Comparison of normalized projection volume predicted by the linear 
model with data used for fitting. (a) Reproduction of Figure 3 (main text) restricted to those 213 
regions and experiments included in the optimization. (b) The prediction of the same data as 
generated by the linear model, using only the inter-region connectivity matrix and the expression 
of each injection in the sources.  
 
In order to ascertain the fitting error introduced by the linear optimization model, we computed 
the expression values predicted by the linear model for each experiment included in the 
optimization.  Supplementary Figure 4 compares the measured normalized projection volume 
used to fit the model (a) with the prediction at each target region based on the inter-region 
connectivity matrix and the measured injection volume in each region in each experiment.   
 

ܰܲ ܸ(ܻ) =
σ ௌא,ݓ ܸܲ(ܺ ת (ܧ
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The values of these matrices strongly correlate (Pearson r = .86), implying that the linear model 
predicts the experimentally observed expression pattern in target regions reasonably well. 
 
 
Connection Reciprocity:  
 
Previous studies investigated inter-region reciprocity in cortico-cortical connections in rats (Miller 
and Vogt, 1984; Vogt and Miller, 1983), mice (Wang et al., 2012) and macaque monkey 
(Felleman and Van Essen, 1991; Markov et al., 2012). However, the relative prevalence of 
unidirectional versus reciprocal connectivity remains unclear, in part because of a lack of data 
on connections and strengths in both directions, for a large matrix of brain regions. We 
addressed this question by applying the weighted, directed, adjacency matrix resulting from the 
linear model, utilizing the fact that each value of the matrix has a corresponding statistical 
confidence. We assign each pair of regions a designation as either (i) unconnected, (ii) 
unidirectionally connected, (iii) reciprocally symmetrically connected, or (iv) reciprocally 
asymmetrically connected. We define two regions as unconnected if there are no statistically 
significantly non-zero connections in either direction (as determined by a one-tail z-WHVW�DW�Į� �
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0.05 in each direction). Unidirectional connections are defined as those with only one 
statistically significant connection. Two regions are defined as reciprocal-symmetrically 
connected if at least one connection strength is statistically significantly non-zero, and the 
difference of the two connection strengths fails a two-tail z-WHVW�DW�Į� �������,Q�FRQWUDVW��IRU�
reciprocal-asymmetric connections, their difference is statistically significant (two-tail z-WHVW�DW�Į�
= 0.05).  
 
Among ipsilateral connections, we found comparable numbers of unidirectional connections and 
reciprocal connections (both asymmetric and symmetric) (1,461 vs. 1,508; Supplementary Fig. 
5). When the analysis was restricted to the 39 isocortical regions, we found reciprocal 
connections to be more prevalent (75 unidirectional vs. 156 reciprocal), suggesting that the 
cortex may be characterized by different connectivity rules, e.g. more reciprocity, than the rest 
of the brain. Care must be taken in interpreting the results presented in the main text, in light of 
these definitions of unidirectional and reciprocal connectivity. For example, it is possible to have 
many fibers from one area to another, and very few (but non-zero) fibers in the opposite 
direction; here, we define this to be a reciprocal asymmetric connection. To assess the degree 
to which the disparity between the number of reciprocal and unidirectional connection pairs 
deviated from chance, we created 100 randomly shuffled connectivity matrices. Using the same 
criteria as above, we found that the shuffle trials had a greater directionality disparity. We find 
that although a reciprocal connection does not necessarily follow from a forward projection, it 
does occur more often than chance, relative to a random matrix with the same entries. 
However, a note of caution is appropriate here: these connections are characterized between 
regions, and it is possible that in many reciprocal connections the target of the reciprocal fibers 
may be a different layer or subregion than the layer or subregion where the direct fibers 
originated from. Thus the estimate of the fraction of bidirectional connections is an upper bound, 
and among the bidirectional connections the number of symmetric connections is an upper 
bound. 
 

 
 
Supplementary Fig. 5: Comparison of reciprocity of ipsilateral connections in which the 
connection in one direction is significant, and the other is either zero (unidirectional) or nonzero 
(bidirectional) between all 213 brain regions (left), and between all isocortical regions (right). 
The bidirectional connections are divided into those in which the two connection weights are 
significantly different and those which are not. 
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Graph Analysis: 
 
For each graph type 100 instantiations are generated. For each measure computed, the means 
and standard deviations over these instantiations are computed and reported as mean 
(standard deviation). The node clustering coefficient (between 0 and 1) characterizes the 
tendency of nodes to form tight groups, and is defined as the fraction of triplets made by a node 
and its neighbors, normalized by the number of such triplets possible. There is a clustering 
coefficient for each node, and a standard deviation over the nodes in the graph is also reported. 
Minimum path length represents the length of the path with fewest edges which connect two 
nodes. The eccentricity of a node represents the distance of the node to the furthest point in the 
graph. The (in/out) node degree represents the number of edges connecting (to/from) a node, 
and, by construction, its mean is similar between all graphs. Its standard deviation is important 
as it characterizes how much variability exists within a graph. The degree centrality is related to 
node degree by normalization by number of edges.  
 

 
 
Supplementary Table 7 characterizes several graph-theoretical parameters computed on a 
network whose structure is defined by a binarized, undirected version of the connectivity model 
matrix (LM). Nodes correspond to structures included in the regression of the connectivity 
model, and edges represent the presence of a statistically significant (ߙ = 0.05) directed 
connection between two regions; the in/out degree of a node is the number of edges into/out of 
a node (normalizing this number by the size of the network defines the degree centrality of a 
node). These summary parameters are compared to analogous parameters generated by 
VLPXODWLQJ������UHDOL]DWLRQV�RI�(UGĘV�- 5pQ\L��(5���(UGĘV�DQG�5pQ\i, 1960; see Bollobás, 
2001), Watts-Strogatz (WS) (Watts and Strogatz, 1998), and Barabási-Albert (BA) (Barabási 
and Albert, 1999) random graph models, and against 1000 random graphs that are constrained 
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to have a node distribution identical to LM. An undirected version of the connectivity model is 
compared the WS and BA models, as these latter models assume undirected edges. To 
generate the WS random graphs, the mean clustering coefficient was matched to that of LM. 
For all network parameters, both the mean and standard deviation from realizations of the 1,000 
random graphs are reported for both the estimate of the mean and of the standard deviation 
over the 213 nodes of the graph.  
 

 
 
Supplementary Table 8 The original, directed, version of the connectivity model is compared to 
the shuffled and ER models. 
 
The node clustering coefficient is defined as the fraction of triplets made by a node and its 
neighbors, normalized by the number of possible triplets (See Watts and Strogatz, 1998). The 
eccentricity and minimum path length of a node are complementary views of the maximal and 
minimal number of edges needed to traverse from one node to another in the graph. We 
observe that both the undirected (Supplementary Table 7) and directed (Supplementary 
Table 8) versions of the connectivity model are incompatible with the ER random graph model. 
In both cases, the average minimal path lengths between nodes and network eccentricity are 
significantly different, and the clustering coefficient of the undirected connectivity model is 
almost four times that of the ER model.  A closer agreement is found between the undirected 
connectivity model and the WS model, where an additional degree of freedom is used to fit the 
clustering coefficient (the probability of rewiring an edge here set to ߚ = .159).  After this 
parameter is set, the mean and standard deviation of the minimal path length and degree 
centrality closely agree.  The BA model lacks this additional fit parameter; consequently it 
cannot fit the clustering coefficient measured in the connectivity model, which takes a smaller 
value. Similar disagreement holds in all nontrivial measured parameters. Therefore, we 
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conclude that the undirected version of the connectivity model is more compatible with a Watts-
Strogatz small world organization, and less compatible with a Barabasi-Albert scale-free 
network model. 
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