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1 While-loops

A while-loop lets an iteration stop or continue based on whether or not some condition
holds, rather than continuing for a fixed number of iterations. For example, we can com-
pute the solutions of a model until the time when some variable reaches a threshold value.
The format of a while-loop is

while(condition);
commands

end;

The loop repeats as long as the condition remains true. Loop4.m, on the website contains
an example similar to the for-loop example; run it and you will get a graph of population
sizes over time.

A few things to notice about the program:

1. First, even though the condition in the while statement said
while(popsize<1000)

the last population value was > 1000. That’s because the condition is checked
before the commands in the loop are executed. When the population size was 640
in generation 6, the condition was satisfied so the commands were executed again.
After that the population size is 1280, so the loop is finished and the program moves
on to statements following the loop.

2. Since we don’t know in advance how many iterations are needed, we couldn’t create
in advance a vector to hold the results. Instead, a vector of results was constructed
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== Equal to
∼= Not equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal

to
& AND
| OR
∼ NOT

Table 1: Comparison and logical operators in Matlab.

by starting with the initial population size and appending each new value as it was
calculated.

3. When the loop ends and we want to plot the results, the “y-values” are popsize, and
the x values need to be x=0:something. To find “something”, the size function is
used to find the number of rows in popsize, and then construct an x-vector of the
right size.

The conditions controlling a while loop are built up from operators that compare two
variables (Table 1). Comparison operators produce a value 1 for true statements, and 0
for false. For example try

>> a=1; b=3; c=a<b, d=(a>b)
The parentheses around (a>b) are optional but improve readability.

More complicated conditions are built by using the logical operators AND, OR, and NOT
to combine comparisons. The OR is non-exclusive, meaning that x|y is true if one or
both of x and y are true. For example:

>> a=[1,2,3,4]; b=[1,1,5,5]; (a<b)&(a>3), (a<b)|(a>3)

When we compare two matrices of the same size, or compare a number with a matrix,
comparisons are done element-by-element and the result is a matrix of the same size.
For example

>> a=[1,2,3,4]; b=[1,1,5,5]; c=(a<=b), d=(b>3)
c =

1 0 1 1
d =

0 0 1 1

Within a while-loop it is often helpful to have a counter variable that keeps track of how
many times the loop has been executed. In the following code, the counter variable is n:

n=1;
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while(condition);
commands
n=n+1;

end;

The result is that n=1 holds while the commands (whatever they are) are being executed
for the first time. Afterward n is set to 2, which holds during the second time that the
commands are executed, and so on. This is helpful, for example, if you want to store a
series of results in a vector or matrix.

2 Random numbers

We’ll start with the MATLAB command to make a single “pseudo” random number: rand.

• Type it and see what you get. Write it down.

• Quit matlab, then restart it. Repeat the above.

• Repeat this again ... this time, as soon as MATLAB begins, type
rand(’state’,sum(100*clock)). That resets the “state” of the random num-
ber generator to a unique starting point that has to do with EXACTLY what time it is
when you type it in. Thus, you’ll end up with different random numbers each time ...
as needed. CONCEPT: if you are trying to sample from the underlying probability
distribution ALWAYS ALWAYS ALWAYS use this command before your first use of a
random number generator.
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Next question – how random ARE those random numbers?

Exercise 2.1

• Here is the MATLAB command to make a vector of n “pseudo” random numbers:
r_vector=rand(1,n).
Try it, for n = 100.

• Make a plot of these 100 random variables ... on horizontal axis, you should just
have the integer 1 through 100. On the vertical, you should have a “*” above each
of these numbers, giving the value of the corresponding random number.

• From our website, download and run hist_demo.m Modify this to take 10000 sam-
ples, and plot the probability density p(x) using 100 histogram bins (remember,
help hist is your friend!). Remember, you’re going for the probability DENSITY,
as for continuous-valued random numbers, and will need to properly normalize by
the “bin width” used in plotting the histogram.

• Now, check your answer. You should have just computed the probability density
p(x) for a uniformly distributed random variable with range [0,1]. You will have just
computed the values of that probability density at the centers cj of all the histogram
bins: specifically, you will have defined p(cj).

How do you compute the probability that a continuous-valued random variable lies
between a lefthand endpoint l and a righthand endpoint r? From class, recall that
this is

∫ r

l
p(x)dx. How do we do this numerically, given the values p(cj)? The answer

comes from thinking back to calculus class, when we defined integrals as (Riemann)
sums of bunches of rectangles, each with a height p(cj) and a width (∆). Then, to
compute an integral

∫ r

l
p(x)dx, we summed up the area of each rectangle that lay

between our lefthand and righthand endpoints. That is, we computed
∑

j p(cj)×∆.
This is the (simplest) way we compute integrals numerically as well.

Use this method to compute the expected probability of the random variable lying
between, say, 0.5 and 0.6? What should you get, and what does MATLAB return?

Exercise 2.2

• One of the concerns we had in discussing random number generators is that the
each sequential random number is uncorrelated from the next – roughly speaking,
that you can’t predict the next random number from the previous ones! Please make
a plot to check this by generating 1000 random numbers using MATLAB or R’s rand
command. Make the following scatter plot: where xk is the kth sample, plot xk on the
horizontal axis and xk+1 on the vertical, for k = 1, ..., 1000. Do you see any trends in
your scatter plot? If you are curious, repeat this for the random number generator
with m = 31 discussed in class. Do you see any correlations then?

2.1 Coin tossing

• Next, say we want to simulate the tossing of an unfair coin 1000 times, which comes
up heads with probability, or frequency, p (a number between 0 and 1 that gives the
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fraction of times that a heads occurs).

• Write a for loop with an if statement that turns r_vector into vector
heads_and_tails_vector full of 0’s and 1’s, where a 1 corresponds to a coin
toss that came out heads. Use p = 0.5. Then repeat with p = 0.1.

• Repeat with a single “vectorized” operation that does the same operation in a single
line.

3 Simulating dwell times

We’ll build up the tools we need for this, step by step.

Our objective is to generate synthetic data for single channel recordings from finite state
Markov chains, and explore patterns in the data they produce.

The histogram of expected residence times for each single state in a Markov chain is
exponential, with different mean residence times for different states. To observe this in
the simplest case, we again consider coin tossing. Say you have a single coin that you’re
tossing, which has probability H of coming up “heads.” You sit there tossing it over and
over again. The two outcomes, heads or tails, are the different states in this case. There-
fore the histogram of residence times for heads and tails should each be exponential. We
will take the following steps to compute the residence times:

1. Generate sequences of independent coin tosses based on given probabilities.

2. Calculate the dwell times (also called residence times) by counting the number of
tosses between each transition.

Let’s get started with the first step. We’ll call “heads” state 1, with value S1 = 1, and
likewise for tails and S2 = 2.

• Write a code that “flips the coin 10000 times,” producing a sequence of 10000 “1’s”
and “2’s” that record the results, using H = 0.6. Call this list states. Please use a
for loop, looping over the number of tosses, to accomplish this. If you are thinking
that you could have accomplished this without a for loop, you are right – but we’ll
need this for loop structure for the more interesting cases that we will study below.

OK, now for the dwell times. Here is a strategy for writing the code to compute these. It
is possible to come up with a more computationally efficient attack. Please code up the
approach below, and then test any improvements you make to ensure that the results are
the same!

• Next, we are going to make two lists of these transition times, one for each of the
states.
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Let us start out with these lists being empty, and we will build them up.

In MATLAB:

list_of_dwell_times_in_state_1=[]; %note: [] is the empty list
list_of_dwell_times_in_state_2=[];

Here’s my strategy: I’m just going to loop down the states vector and keep track of what’s
happening. First, set starting_state: the state that I am dwelling in for the “current”
sequence of states.

In MATLAB:

starting_state=states(1);
starting_timestep=1; %the timestep at which I start dwelling.

Next, loop over all the states. We keep going until we come to a transition in the value of
the state. When that happens, we store the number of steps that has elapsed since the
last transition (or, for the first transition only, since we started counting) in one of the two
lists made above. Here is the code, with comments in place:

In MATLAB:

for k=2:length(states)

%Ask the question: Am I still in the starting_state?
if states(k) == starting_state

%if so, do nothing
else

%OK, now I need to do something. What’s the dwell time in
%starting_state?
dwell_time=k-starting_timestep;

%assign this dwell time to the right list.

if starting_state==1
list_of_dwell_times_in_state_1=[list_of_dwell_times_in_state_1 dwell_time];

else
list_of_dwell_times_in_state_2=[list_of_dwell_times_in_state_2 dwell_time];

end

%Finally, I must reset starting_state and starting_timestep to
%begin measuring the NEXT dwell time

starting_state=states(k);
starting_timestep=k;

end
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end

• Exercise 3.1 Cool! Now we’re done. All that remains is to plot a histogram of dwell
times in the various states. Please assemble the code above, and add some lines
to the end to compute the histogram of dwell times in state 1 and in state 2. Can
you see that these dwell times reflect an exponential distribution? Please make the
appropriate plot, taking a log to verify this. Can you estimate the value of H from
the histograms alone, using a formula from class?
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