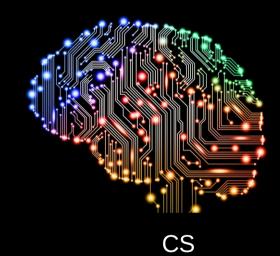
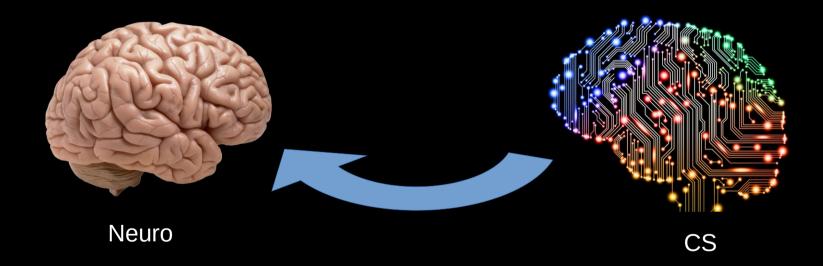
Kernel theories of networks and their use in neuroscience

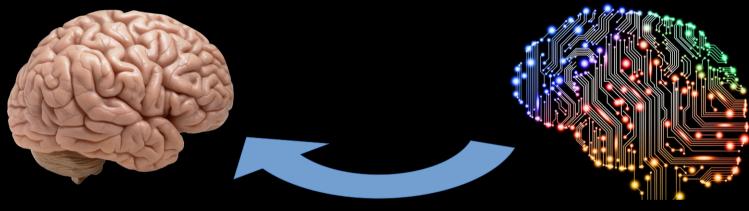
Kameron Decker Harris

University of Washington Paul G. Allen School of Comp Science & Engineering, Biology

> Western Washington University Computer Science



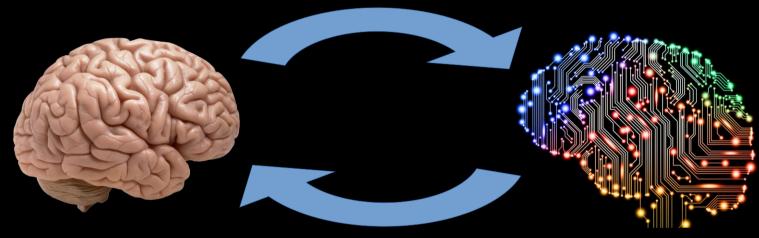




Big data management Analysis of experiments

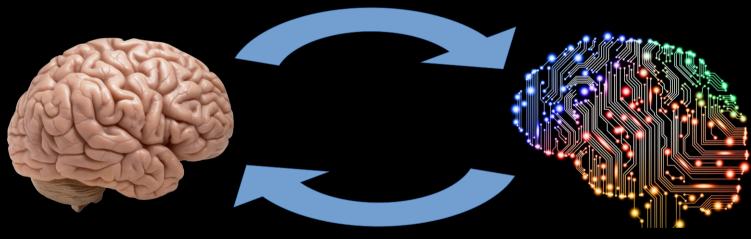


Big data management Analysis of experiments **Artificial neural networks**



Big data management Analysis of experiments **Artificial neural networks**

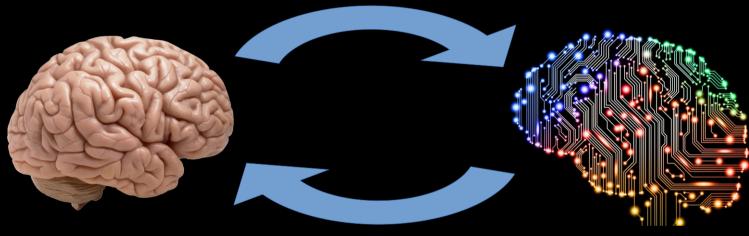
Brain-inspired algorithms



Neuro

Big data management Analysis of experiments **Artificial neural networks**

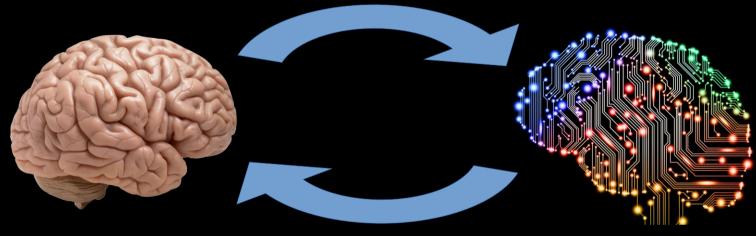
Brain-inspired algorithms Emphasis on dynamics



Neuro

Big data management Analysis of experiments **Artificial neural networks**

Brain-inspired algorithms Emphasis on dynamics Alternate models of computation



Neuro

Big data management Analysis of experiments **Artificial neural networks**

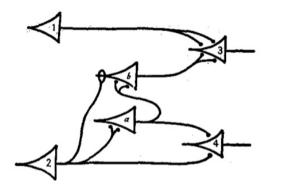
Overview

- Context: structure, randomness, & neuroscience
- Kernel theory:
 - Mathematical framework
 - Network sparsity \rightarrow additive functions
 - Tuning curves \rightarrow basis change
- Conclusions

Overview

- Context: structure, randomness, & neuroscience
- Kernel theory:
 - Mathematical framework
 - Network sparsity \rightarrow additive functions
 - Tuning curves \rightarrow basis change
- Conclusions

Structure and function



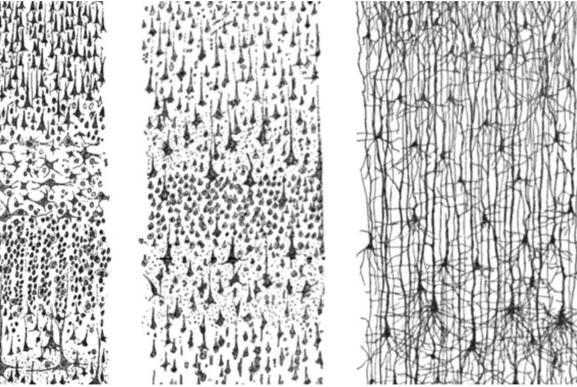
" for any logical expression satisfying certain conditions, one can find a net behaving in the fashion it describes "

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

<u>1943</u>

The messy reality of neuronal structure



• Some connections are stereotyped: CPGs, Drosophila Gal4 lines

- Some connections are stereotyped: CPGs, *Drosophila* Gal4 lines
- Some connections are nearly random: mushroom body, cortex?
 - Sophie Caron et al.

- Some connections are stereotyped: CPGs, *Drosophila* Gal4 lines
- Some connections are nearly random: mushroom body, cortex?
 - Sophie Caron et al.

Hypotheses:

- Some connections are stereotyped: CPGs, *Drosophila* Gal4 lines
- Some connections are nearly random: mushroom body, cortex?
 - Sophie Caron et al.

Hypotheses:

• Connections in many large networks are well-described by *random distributions* with *structure*

- Some connections are stereotyped: CPGs, *Drosophila* Gal4 lines
- Some connections are nearly random: mushroom body, cortex?
 - Sophie Caron et al.

Hypotheses:

- Connections in many large networks are well-described by *random distributions* with *structure*
- Plasticity and evolution modify these distributions

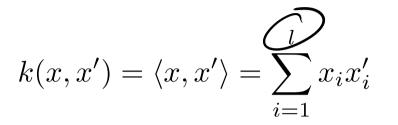
Overview

- Context: structure, randomness, & neuroscience
- Kernel theory:
 - Mathematical framework
 - Network sparsity \rightarrow additive functions
 - Tuning curves \rightarrow basis change
- Conclusions

Kernels: introduction & definition

X input vector
$$l$$
-dimensional $x \in X \subseteq [\mathbb{R}^{d}$ compact
 $k(x, x')$ Kernel function computes "similarity"
 $requirements:$ $k(x, x') = \langle \phi(x), \phi(x') \rangle$
 $\cdot k(x, x') = k(x', x)$
 $\cdot k(x, x') = k(x', x)$
 $\cdot K = (k(x_i, x_j))_{i,j=1}$ Num kernel matrix
 $K = (k(x_i, x_j))_{i,j=1}$ symmetric d positive definite
 $c^T K c > 0$
 $\cdot k$ continuous

See book by Shawe-Taylor & Christianini



1) Linear

1) Linear

2) Polynomial

$$k(x, x') = \langle x, x' \rangle = \sum_{i=1}^{l} x_i x'_i$$
$$k(x, x') = (c + \langle x, x' \rangle)^d$$

1) Linear

2) Polynomial

$$k(x, x') = \langle x, x' \rangle = \sum_{i=1}^{l} x_i x'_i$$
$$k(x, x') = (c + \langle x, x' \rangle)^d$$

3) Radial basis function

Eigendecomposition: Mercer's theorem

For a kernel which is symmetric, positive definite, continuous on a compact domain:

00

PD matrix

$$k(x, x') = \sum_{i=1}^{\infty} \lambda_i \psi_i(x) \psi_i(x')$$

$$k(x, x') = \int_{i=1}^{\infty} \frac{\lambda_i \psi_i(x) \psi_i(x')}{1}$$

$$k(x, x') = \sum_{i=1}^{\infty} \frac{\lambda_i \psi_i(x) \psi_i(x')}{1}$$

Utility of kernel algorithms

Utility of kernel algorithms

• Kernels implicitly represent inputs in higher-dimensional features space called *reproducing kernel Hilbert space (RKHS)*

$$k(x, x') = \langle \phi(x), \phi(x') \rangle$$

Utility of kernel algorithms

• Kernels implicitly represent inputs in higher-dimensional features space called *reproducing kernel Hilbert space (RKHS)*

$$k(x, x') = \langle \phi(x), \phi(x') \rangle$$

• Algorithms can leverage this and just work with kernel matrix: SVM, ridge regression, PCA, etc.

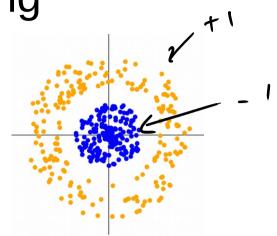
$$f(x) = \mathbf{y} \underbrace{(\mathbf{K} + \alpha \mathbf{I})^{-1} \kappa(x)}_{\text{matrix}}, \quad \kappa(x) = (\mathbf{k}(x_i, x))_{i=1}^n$$

$$\mathsf{solve} \quad \mathsf{Tr} \left(\mathbf{K} \left(\mathbf{K} + \mathbf{d} \mathbf{I} \right)^{-1} \right)$$

Kernels and learning

Given: examples $(\mathbf{x}^i, y_i)_{i=1}^n$

Find: f so that $f(\mathbf{x}) \approx y$



Kernels and learning

Given: examples $(\mathbf{x}^i, y_i)_{i=1}^n$

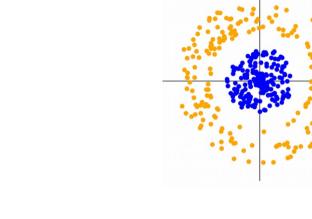
Find: f so that $f(\mathbf{x}) \approx y$

Key parameters

RKHS norm of the target function

 $f \in \mathcal{H}: \iint f \parallel_{\mathcal{H}} \mathcal{I}$

significant eigenvalues of K 2 depended on



Kernel theory of networks

Related review: "Randomness in neural networks" by Scardapane & Wang (2017)

Kernel theory of networks Developed for big datasets, i.e. *n* huge $y(k + a^{T})'$

- Rahimi & Recht (2008) **random features** ... sketching K
- older work in Gaussian processes by Neal (1996), Williams (1997)

Kernel theory of networks

Developed for big datasets, i.e. *n* huge

- Rahimi & Recht (2008) random features ... sketching K
- older work in Gaussian processes by Neal (1996), Williams (1997)

Exciting work tries to understand success of ANNs trained via gradient descent

- neural tangent kernel (NTK) Jacot, Gabriel, Hongler, 2018; Arora et al, 2019
- convolutional kernel networks (CKN) Mallat; Bruna; Harchaoui; Chizat et al
- interpolation & double descent Belkin et al; Mei & Montanari

Kernel theory of networks

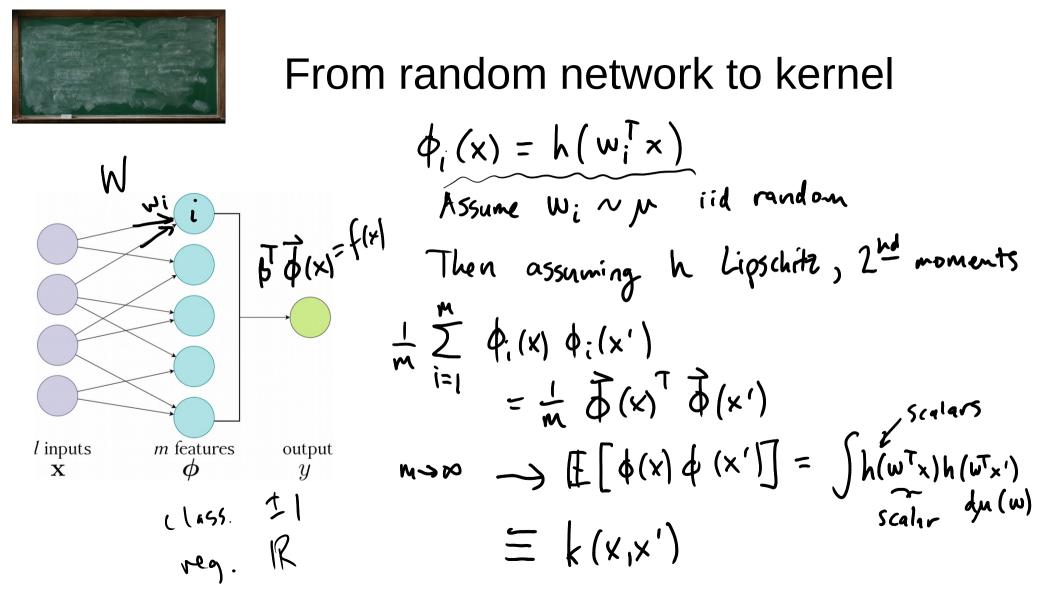
Developed for big datasets, i.e. *n* huge

- Rahimi & Recht (2008) **random features** ... sketching K
- older work in Gaussian processes by Neal (1996), Williams (1997)

Exciting work tries to understand success of ANNs trained via gradient descent

- neural tangent kernel (NTK) Jacot, Gabriel, Hongler, 2018; Arora et al, 2019
- convolutional kernel networks (CKN) Mallat; Bruna; Harchaoui; Chizat et al
- interpolation & double descent Belkin et al; Mei & Montanari

Barely applied in neuroscience, so far



Convergence rate to kernel

Harris, 2019 (informal version)

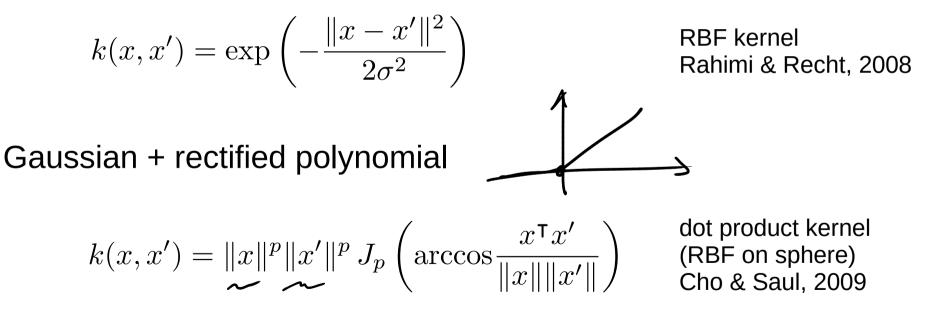
Claim The random map $\frac{1}{m}\phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{x}')$ with κ -Lipschitz nonlinearity uniformly approximates $k_D^{\text{dist}}(\mathbf{x}, \mathbf{x}')$ to error ϵ using $m = \Omega(\frac{l\kappa^2}{\epsilon^2} \log \frac{C}{\epsilon})$ many features

Gaussian $w \sim N(0, \sigma^{-2}I)$ + Fourier $\exp(iw^{\intercal}x)$

$$k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$$

RBF kernel Rahimi & Recht, 2008

Gaussian $w \sim N(0, \sigma^{-2}I)$ + Fourier $\exp(iw^{\intercal}x)$



Gaussian $w \sim N(0, \sigma^{-2}I)$ + Fourier $\exp(iw^{\intercal}x)$

$$k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$$

RBF kernel Rahimi & Recht, 2008

Gaussian + rectified polynomial

$$k(x, x') = \|x\|^p \|x'\|^p J_p \left(\arccos \frac{x^{\mathsf{T}} x'}{\|x\| \|x'\|} \right) \qquad \begin{array}{l} \text{dot product kerne} \\ \text{(RBF on sphere)} \\ \text{Cho \& Saul, 2009} \end{array}$$

Almost always take uncorrelated, Gaussian weights No network or input <u>structure</u>

The rest of the talk

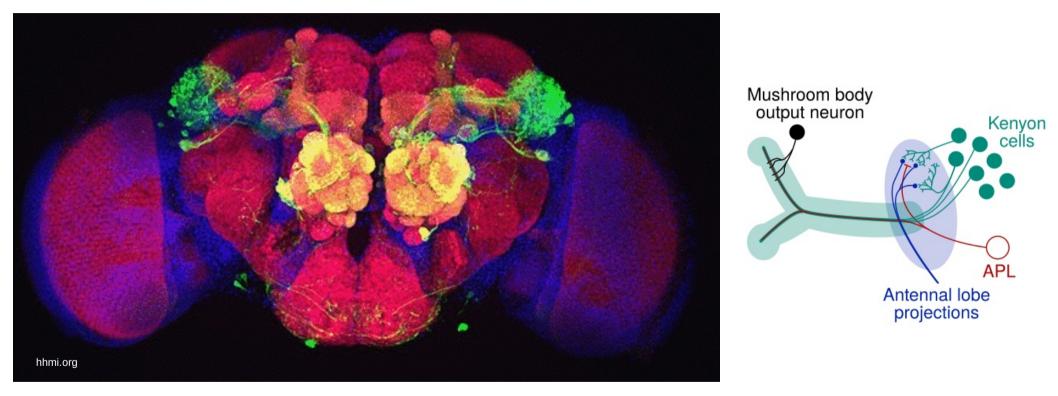
Build in <u>structure</u> that occurs in neural systems Show what the kernel theory says

Overview

- Context: structure, randomness, & neuroscience
- Kernel theory:
 - Mathematical framework
 - Network sparsity \rightarrow additive functions
 - Tuning curves \rightarrow basis change
- Conclusions

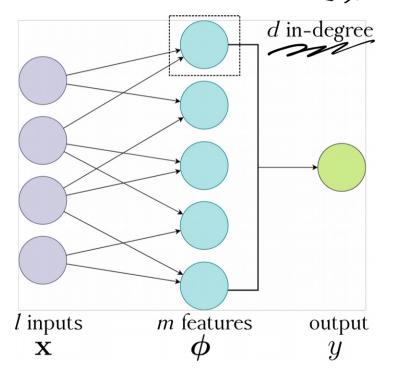
Harris. "Additive function approximation in the brain." NeurIPS Neuro/AI workshop, 2019 Litwin-Kumar, Harris, Axel, Sompolinsky, Abbott. "Optimal degrees of synaptic connectivity." Neuron, 2017

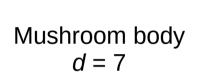
Olfactory network of Drosophila



Output neuron decides: good smell or bad smell?

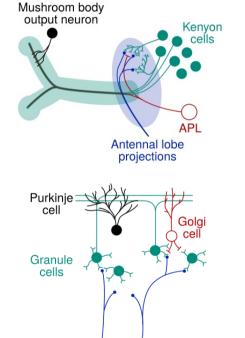
Common brain network structure: 2-layer sparse expansion





Cerebellum

d = 4

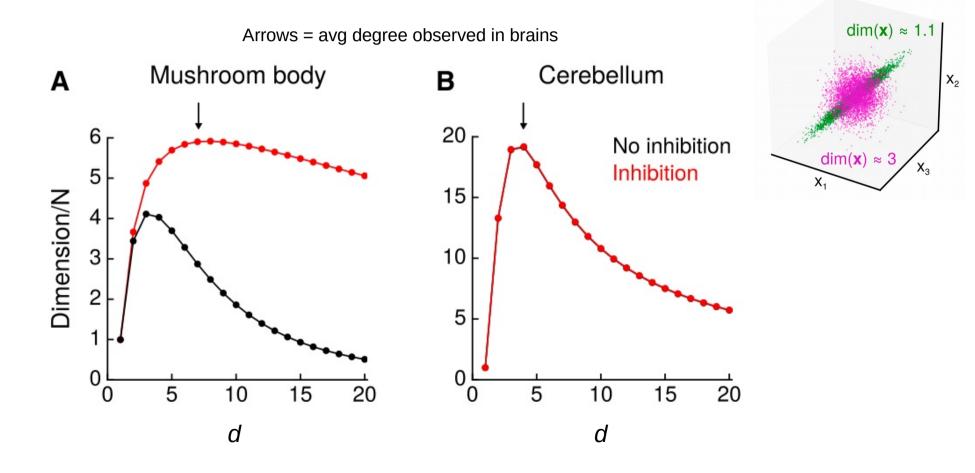


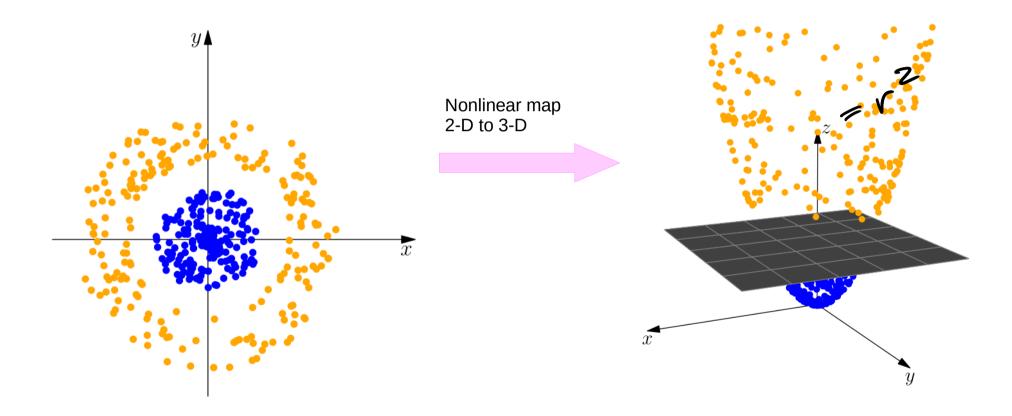
Litwin-Kumar, Harris, Axel, Sompolinsky, Abbott

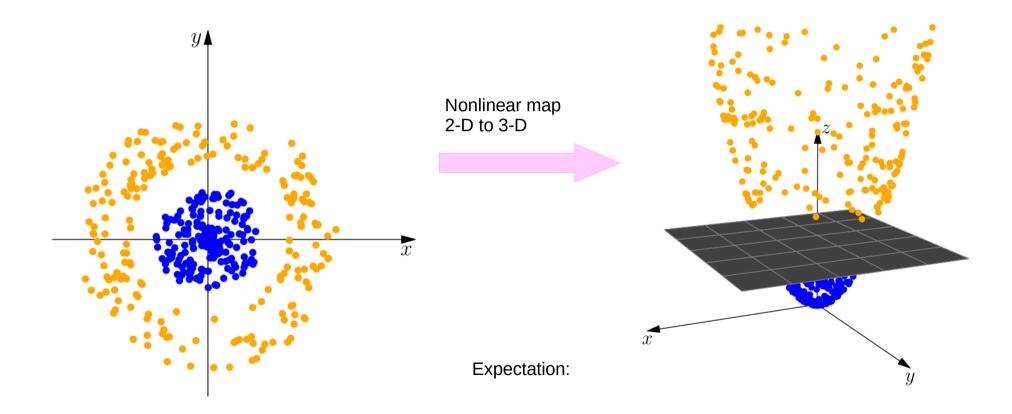
Mossy fibers

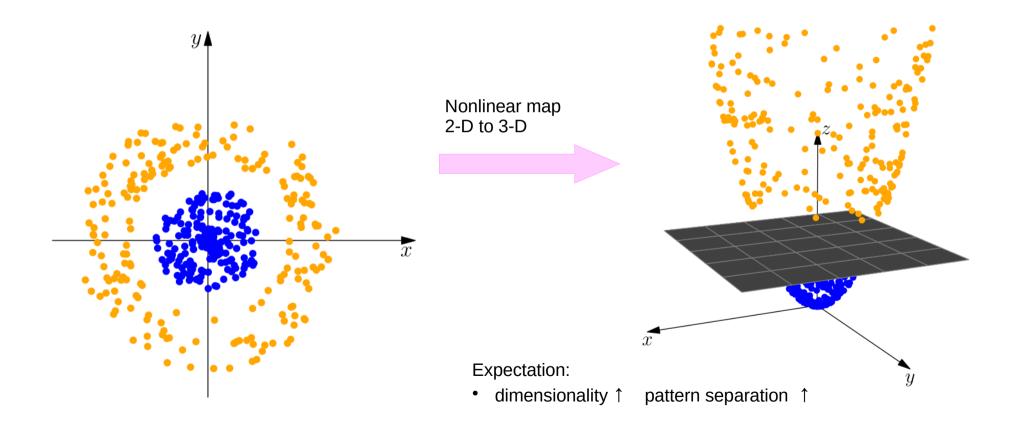
Marr; Albus; Hansel & van Vreeswijk; Rigotti et al; Barak et al; Babadi & Sompolinsky; Cayco-Gajic, Clopath, Silver; Dasgupta, Stevens, Navlakha

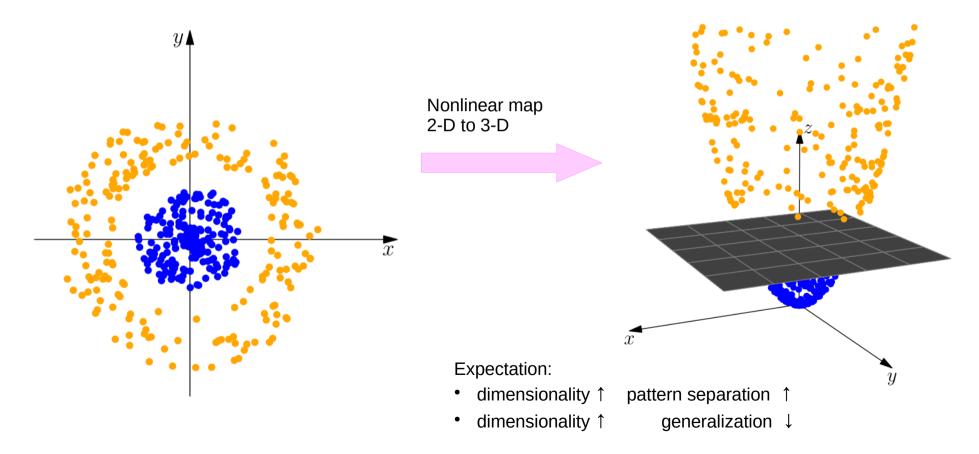
Sparsity under constraints = max dimensionality











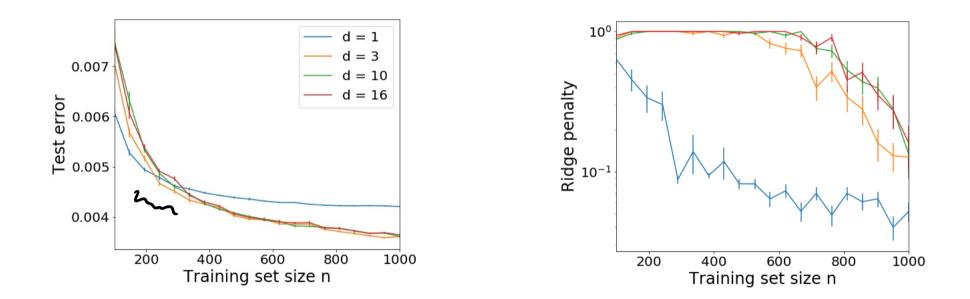
Kernels: *sparse networks* = *additive* functions

Additive functions are constrained, hence low-dimensional (Stone, 1985 & '86)

$$d = 3: \qquad f(\mathbf{x}) = f_1(x_1, x_3, x_4) + f_2(x_1, x_4, x_{11}) + \dots$$

Sparse network kernels

Simulations confirm sparsity advantage



Target function: Random linear + degree 3 polynomial

Overview

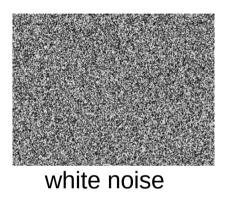
- Context: structure, randomness, & neuroscience
- Kernel theory:
 - Mathematical framework
 - Network sparsity \rightarrow additive functions
 - Tuning curves \rightarrow basis change
- Conclusions

Biraj Pandey NSF Grad Fellow Applied Math

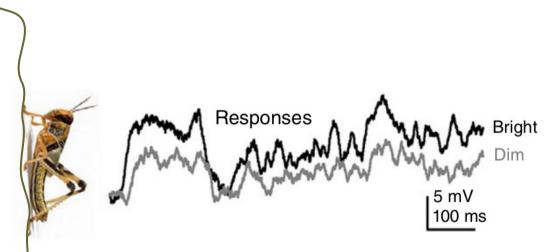
Bing Brunton

"Random features for structured input"

Defining "structured input"



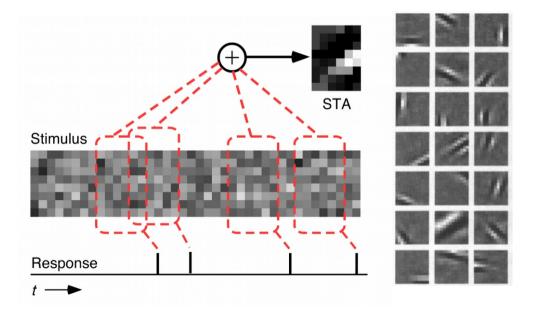
MNIST



locust photoreceptor, natural stimulus

Tuning curves occuring in nature

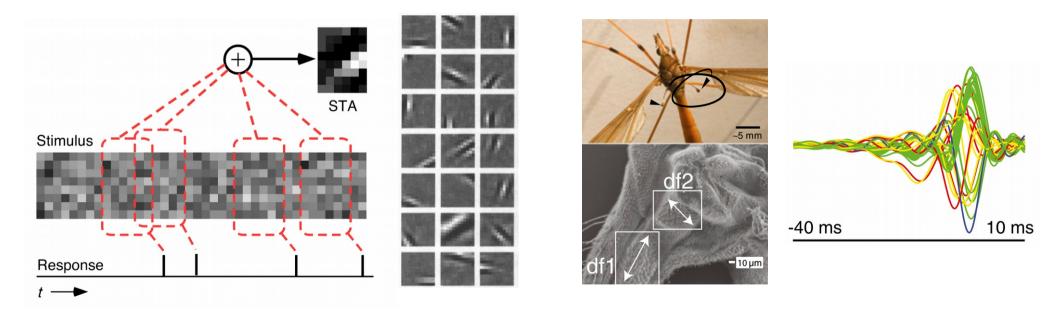
Stimulus that best drives a neuron, i.e. its receptive field



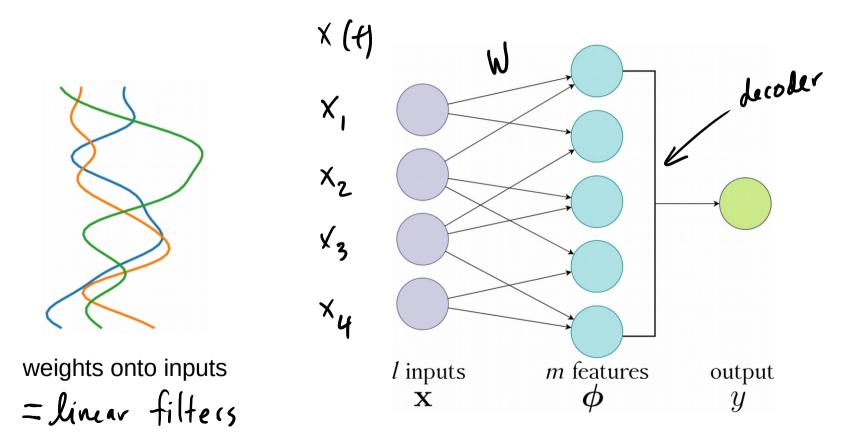
Schwartz et al; Olshausen & Field; Fox, Fairhall, Daniel

Tuning curves occuring in nature

Stimulus that best drives a neuron, i.e. its receptive field



Linear-nonlinear model neurons



Theory of random tuning curves

Gaussian Process: $k(x, y) = e^{-\gamma |x-y|^2}$; $\gamma = 2$

2

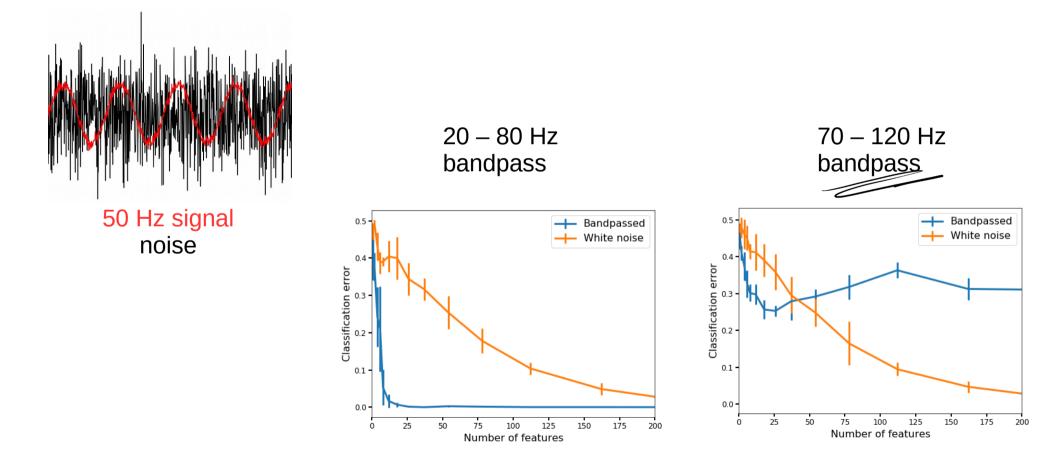
1

0

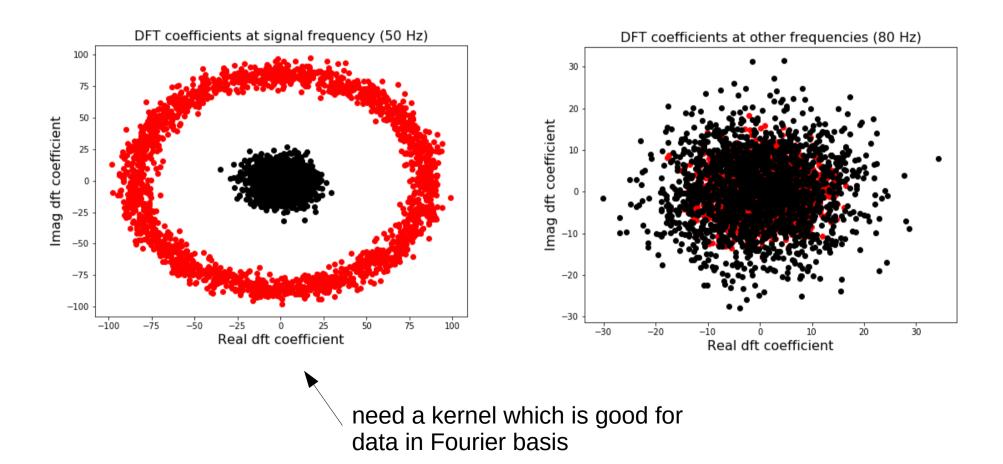
Model **tuning curves** as random function drawn from a Gaussian process (GP)

$$\begin{split} & \omega(\tau) \quad \mathbb{E}[w(1)] = 0 \\ & C(t,t') = \mathbb{E}[w(t) w(t')] \\ & \underline{\mathsf{Mercer's thum}}: \quad \omega(t) = \sum_{i=1}^{\infty} \sqrt{\lambda_i} \quad G_i : \mathcal{V}_i(t) \leftarrow eigenfunctions \\ & \underbrace{\mathsf{Mercer's thum}:}_{i=1} \quad \omega(t) = \sum_{i=1}^{\infty} \sqrt{\lambda_i} \quad G_i : \mathcal{V}_i(t) \leftarrow eigenfunctions \\ & \underbrace{\mathsf{Mercer's thum}:}_{weights} \quad G_i \sim \mathcal{N}(0,1) \\ & \underline{\mathsf{W}} = \mathcal{U} \quad \mathsf{D} \quad \mathsf{g} \\ & \underline{\mathsf{W}} = \int_{1}^{\infty} \mathbb{Q} \quad \mathsf{W} \\ & \underline{\mathsf{W}} \\ & \underline{\mathsf{W}} = \int_{1}^{\infty} \mathbb{Q} \quad \mathsf{W} \\ & \underline{\mathsf{W}} \\ & \underline{\mathsf{W}} = \int_{1}^{\infty} \mathbb{Q} \quad \mathsf{W} \\ & \underline{\mathsf{W}} \\$$

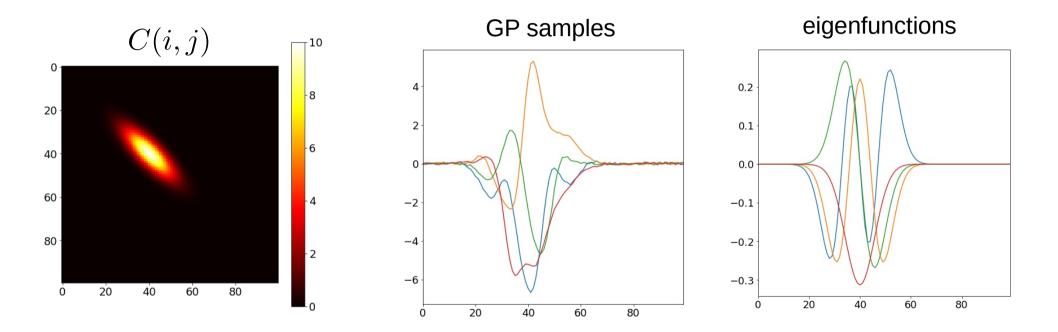
Example: frequency detection in timeseries



Fourier analysis of this test case



Example: wavelet basis via non-stationary GPs



Overview

- Context: structure, randomness, & neuroscience
- Kernel theory:
 - Mathematical framework
 - Network sparsity \rightarrow additive functions
 - Tuning curves \rightarrow basis change
- Conclusions

- Kernel representation of random networks is powerful
 - statistical learning theory: Which functions are easy to learn?
 - neuro can learn from ML (dimensionality) and vice-versa (structure)

- Kernel representation of random networks is powerful
 - statistical learning theory: Which functions are easy to learn?
 - neuro can learn from ML (dimensionality) and vice-versa (structure)
- Sparse network leads to additive kernels
 - classical way to model "big data"

- Kernel representation of random networks is powerful
 - statistical learning theory: Which functions are easy to learn?
 - neuro can learn from ML (dimensionality) and vice-versa (structure)
- Sparse network leads to additive kernels
 - classical way to model "big data"
- Random tuning curves could explain variability seen
 - despite randomness, may represent inputs in Fourier/wavelet bases

- Kernel representation of random networks is powerful
 - statistical learning theory: Which functions are easy to learn?
 - neuro can learn from ML (dimensionality) and vice-versa (structure)
- Sparse network leads to additive kernels
 - classical way to model "big data"
- Random tuning curves could explain variability seen
 - despite randomness, may represent inputs in Fourier/wavelet bases
- Many future directions
 - feedback, temporal dynamics, unsupervised settings

Thank you!

- Funding: Washington Research
- Collaborators:
 - Biraj Pandey, Bing Brunton
 - Marjorie Xie, Ashok Litwin-Kumar, Larry Abbott, Richard Axel, Haim Sompolinsky
- Thanks to Raj Rao, Kamesh Krishnamurthy, Yian Ma, & Francis Bach for discussions

Meaning of dimensionality in statistical learning

- Eigenvalue decay of kernel matrix *K* that depends on
 - kernel function
 - distribution of data x

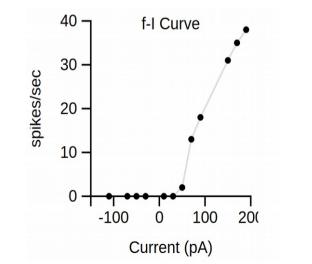
$$\mathbb{E}(y - \hat{y})^2 = (\text{bias})^2 + \underbrace{\text{variance}}_{\leq \frac{\sigma_y^2}{n}} \operatorname{dim}_{\leq \frac{\sigma_y^2}{n}} \operatorname{dim}_{=\frac{\sigma_y^2}{n}} \operatorname{dim}_{=\frac{\sigma_y^2}{n}} \operatorname{dim}_{=\frac{\sigma_y^2}{n}} \operatorname{dim}_{=\frac{\sigma_y^2}{n}} \operatorname{dim}$$

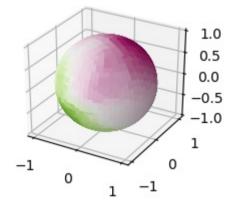
* but not the "participation ratio"

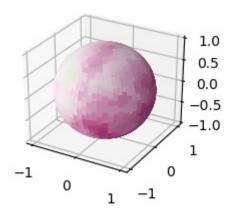
Kernels highlight importance of "preprocessing"

- Antennal lobe glomeruli provide
 - pooling of ORN inputs
 - divisive <u>normalization</u>
- RBFs on the unit sphere

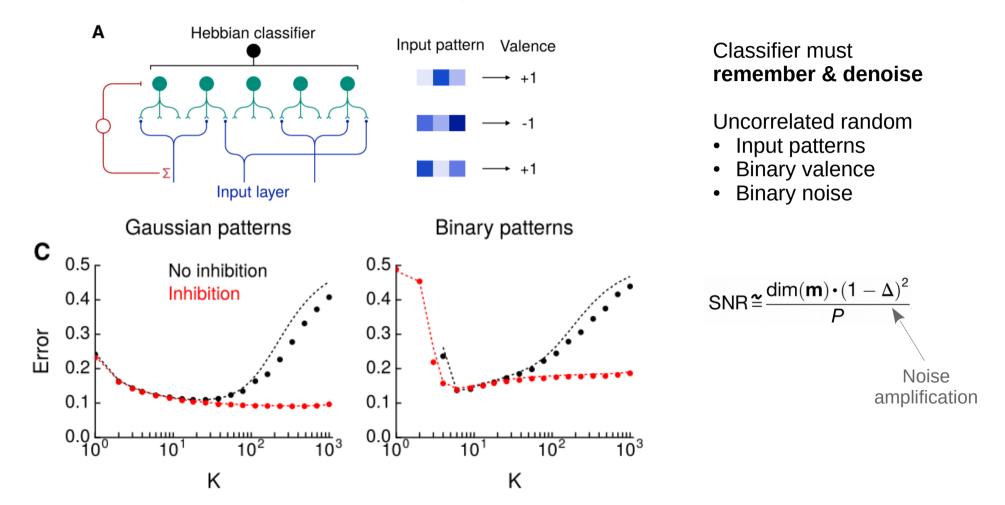
$$\phi_i(\mathbf{x}) = h(\mathbf{w}_i^\mathsf{T}\mathbf{x})$$







Sparsity can improve classification



Learning input-mixed weights most useful only in dense networks

