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1943

Structure and function

“ for any logical expression 
satisfying certain conditions, 
one can find a net behaving 
in the fashion it describes ”



  

The messy reality of neuronal structure

Ramón y Cajal
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Random vs stereotyped is not a dichotomy

● Some connections are stereotyped: CPGs, Drosophila Gal4 lines

● Some connections are nearly random: mushroom body, cortex?

– Sophie Caron et al.

Hypotheses:

● Connections in many large networks are well-described by random 
distributions with structure

● Plasticity and evolution modify these distributions
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Kernels: introduction & definition

See book by Shawe-Taylor & Christianini
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Examples of kernels

1) Linear

2) Polynomial

3) Radial basis function



  

Eigendecomposition: Mercer’s theorem

For a kernel which is symmetric, positive definite, continuous on a 
compact domain:
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Utility of kernel algorithms

● Kernels implicitly represent inputs in higher-dimensional 
features space called reproducing kernel Hilbert space (RKHS)

● Algorithms can leverage this and just work with kernel matrix: 
SVM, ridge regression, PCA, etc.



  

Kernels and learning

Shawe-Taylor & Christianini; Wahba; Bartlett & Mendelson



  

Kernels and learning

Key parameters

RKHS norm of the target function

Dimensionality of the kernel matrix a.k.a. Rademacher complexity

# significant eigenvalues of K

Shawe-Taylor & Christianini; Wahba; Bartlett & Mendelson
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Kernel theory of networks

Developed for big datasets, i.e. n huge

● Rahimi & Recht (2008) random features … sketching K

● older work in Gaussian processes by Neal (1996), Williams (1997)

Exciting work tries to understand success of ANNs trained via gradient descent

● neural tangent kernel (NTK) – Jacot, Gabriel, Hongler, 2018; Arora et al, 2019

● convolutional kernel networks (CKN) – Mallat; Bruna; Harchaoui; Chizat et al

● interpolation & double descent – Belkin et al; Mei & Montanari

Barely applied in neuroscience, so far

Related review: “Randomness in neural networks” by Scardapane & Wang (2017)



  

From random network to kernel



  

Convergence rate to kernel

Harris, 2019 (informal version)
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Examples of random feature kernels

Gaussian                          +  Fourier

Gaussian + rectified polynomial

RBF kernel
Rahimi & Recht, 2008

dot product kernel
(RBF on sphere)
Cho & Saul, 2009

Almost always take uncorrelated, Gaussian weights
No network or input structure



  

The rest of the talk

Build in structure that occurs in neural systems

Show what the kernel theory says



  

Overview
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● Kernel theory:

– Mathematical framework

– Network sparsity → additive functions
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Harris. “Additive function approximation in the brain.” NeurIPS Neuro/AI workshop, 2019
Litwin-Kumar, Harris, Axel, Sompolinsky, Abbott. “Optimal degrees of synaptic connectivity.” Neuron, 2017



  

Olfactory network of Drosophila

Output neuron decides: 
good smell or bad smell?

hhmi.org



  

Common brain network structure: 
2-layer sparse expansion

Mushroom body
d = 7

Cerebellum
d = 4

Litwin-Kumar, Harris, Axel, Sompolinsky, Abbott 

Marr; Albus; Hansel & van Vreeswijk; Rigotti et al; Barak et al; Babadi & Sompolinsky; Cayco-Gajic, Clopath, Silver;  Dasgupta, Stevens, Navlakha



  

Sparsity under constraints = max dimensionality

Arrows = avg degree observed in brains

d d



  

https://www.researchgate.net/publication/262800142_Lecture_Notes_on_the_Kernel_Trick_I

Nonlinear map
2-D to 3-D

Dimensionality can help or hurt learning
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https://www.researchgate.net/publication/262800142_Lecture_Notes_on_the_Kernel_Trick_I

Nonlinear map
2-D to 3-D

Expectation: 
● dimensionality ↑    pattern separation  ↑
● dimensionality ↑           generalization  ↓

Dimensionality can help or hurt learning



  

Kernels: sparse networks = additive functions

Additive functions are constrained, hence low-dimensional  (Stone, 1985 & ‘86)

d = 3 :



  

Sparse network kernels



  

Simulations confirm sparsity advantage

Target function:
Random linear +  degree 3 polynomial



  

Overview

● Context: structure, randomness, & neuroscience
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Biraj Pandey
NSF Grad Fellow

Applied Math

Bing Brunton
Biology“Random features for structured input”



  

Defining “structured input”

white noise

MNIST

locust photoreceptor, natural stimulus

LeCun; Juusola & Song, 2017



  

Tuning curves occuring in nature

Stimulus that best drives a neuron, i.e. its receptive field

Schwartz et al; Olshausen & Field; Fox, Fairhall, Daniel



  

Tuning curves occuring in nature

Stimulus that best drives a neuron, i.e. its receptive field

Schwartz et al; Olshausen & Field; Fox, Fairhall, Daniel



  

Linear-nonlinear model neurons

weights onto inputs



  

Theory of random tuning curves

Model tuning curves as random function 
drawn from a Gaussian process (GP)



  

Example: frequency detection in timeseries

50 Hz signal
noise

20 – 80 Hz
bandpass

70 – 120 Hz
bandpass



  

Fourier analysis of this test case

need a kernel which is good for 
data in Fourier basis



  

Example: wavelet basis via non-stationary GPs

GP samples eigenfunctions
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Conclusions

● Kernel representation of random networks is powerful

– statistical learning theory: Which functions are easy to learn?

– neuro can learn from ML (dimensionality) and vice-versa (structure)

● Sparse network leads to additive kernels

– classical way to model “big data”

● Random tuning curves could explain variability seen

– despite randomness, may represent inputs in Fourier/wavelet bases

● Many future directions

– feedback, temporal dynamics, unsupervised settings



  

Thank you!

● Funding:

● Collaborators:

– Biraj Pandey, Bing Brunton

– Marjorie Xie, Ashok Litwin-Kumar, Larry Abbott, Richard 
Axel, Haim Sompolinsky

● Thanks to Raj Rao, Kamesh Krishnamurthy, Yian Ma, & 
Francis Bach for discussions



  

Meaning of dimensionality in statistical learning

● Eigenvalue decay of kernel matrix K that depends on

– kernel function

– distribution of data x

* but not the 
“participation ratio”



  

Kernels highlight importance of “preprocessing”

● Antennal lobe glomeruli provide

– pooling of ORN inputs

– divisive normalization

● RBFs on the unit sphere



  

Sparsity can improve classification

Classifier must 
remember & denoise

Uncorrelated random 
● Input patterns
● Binary valence
● Binary noise

Noise 
amplification



  

Learning input-mixed weights
most useful only in dense networks

Learning benefit


