Tensor complexity and completion using hypergraph expanders

Kameron Decker Harris

Paul G. Allen School of Computer Science & Engineering, Biology, UW WWU Computer Science

Joint work with Yizhe Zhu, UCSD Math

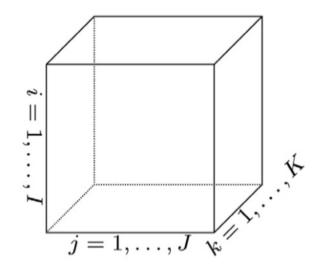
Overview

- 1) Introduction
- 2) Tensor complexity: norms & quasinorms
- 3) Hypergraph observation model
- 4) Tensor completion bound

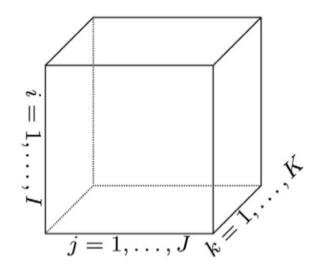
Overview

1) Introduction

- 2) Tensor complexity: norms & quasinorms
- 3) Hypergraph observation model
- 4) Tensor completion bound

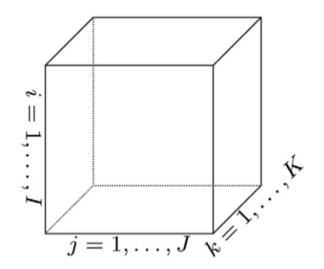


A third-order tensor: $\mathbf{X} \in \mathbb{R}^{I \times J \times K}$



For us, a multi-dimensional array

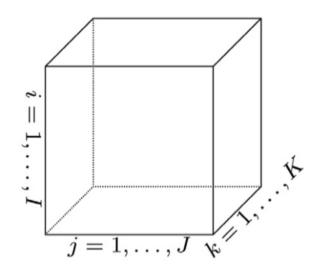
A third-order tensor: $\mathbf{X} \in \mathbb{R}^{I \times J \times K}$



For us, a multi-dimensional array

Also:

A third-order tensor: $\mathbf{X} \in \mathbb{R}^{I \times J \times K}$

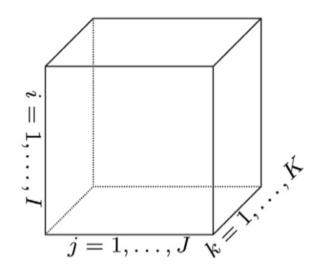


For us, a multi-dimensional array

Also:

• multi-linear operator

A third-order tensor: $\mathbf{X} \in \mathbb{R}^{I \times J \times K}$

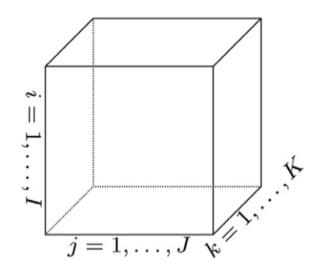


For us, a multi-dimensional array

Also:

- multi-linear operator
- homogeneous polynomial

A third-order tensor: $\mathbf{X} \in \mathbb{R}^{I \times J \times K}$

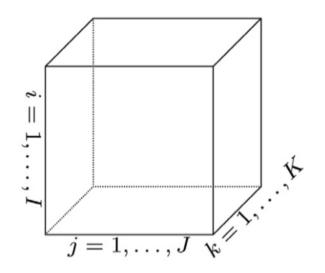


For us, a multi-dimensional array

Also:

- multi-linear operator
- homogeneous polynomial
- **different** than a matrix

A third-order tensor: $\mathbf{X} \in \mathbb{R}^{I \times J \times K}$



For us, a multi-dimensional array

Also:

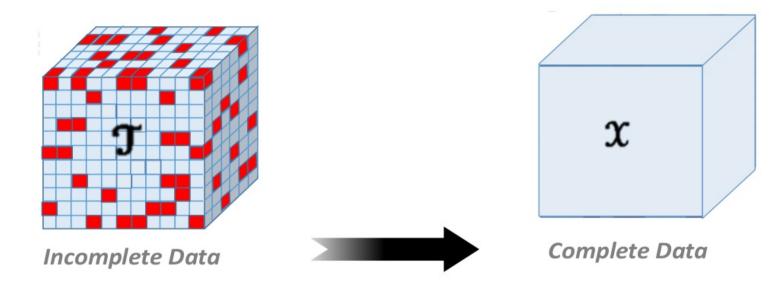
- multi-linear operator
- homogeneous polynomial
- different than a matrix

A third-order tensor: $\mathbf{X} \in \mathbb{R}^{I \times J \times K}$

Excellent introduction: Kolda & Bader. SIAM Rev (2009)

Many problems cast as tensor completion

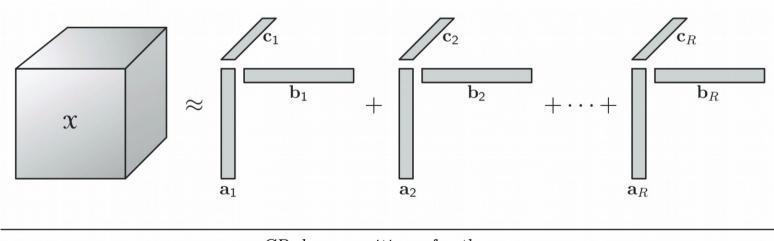
• Use low-rank structure to infer missing data



Song, Ge, Caverlee, Hu. KDD (2019)

But tensor rank is not like in matrices

- More than one version (CP/Kruskal, Tucker, unfolding rank)
- "Most tensor problems are NP-hard", Hillar & Lim. ACM (2013)



CP decomposition of a three-way array.

- Matrix results:
 - $O(nr \log(n))$ samples suffice, fast spectral algorithms
 - Keshavan, Montanari, Oh. JMLR (2010); early work by Fazel, Recht, Candes, inter alia

- Matrix results:
 - $O(nr \log(n))$ samples suffice, fast spectral algorithms
 - Keshavan, Montanari, Oh. JMLR (2010); early work by Fazel, Recht, Candes, inter alia
- Tensor results:
 - Flatten, $O(n^{t/2} r \operatorname{polylog}(n))$ samples, matrix algorithms
 - Gandy, Recht, Yamada (2011); Mu et al. (2014); Montanari & Sun (2018)

- Matrix results:
 - $O(nr \log(n))$ samples suffice, fast spectral algorithms
 - Keshavan, Montanari, Oh. JMLR (2010); early work by Fazel, Recht, Candes, inter alia
- Tensor results:
 - Flatten, $O(n^{t/2} r \operatorname{polylog}(n))$ samples, matrix algorithms
 - Gandy, Recht, Yamada (2011); Mu et al. (2014); Montanari & Sun (2018)
 - SOS relaxation t = 3, $O(n^{3/2} r \operatorname{polylog}(n))$ samples, poly algorithm
 - Barak & Moitra. JMLR (2016) ... connection to random 3-SAT & hardness result

- Matrix results:
 - $O(nr \log(n))$ samples suffice, fast spectral algorithms
 - Keshavan, Montanari, Oh. JMLR (2010); early work by Fazel, Recht, Candes, inter alia
- Tensor results:
 - Flatten, $O(n^{t/2} r \operatorname{polylog}(n))$ samples, matrix algorithms
 - Gandy, Recht, Yamada (2011); Mu et al. (2014); Montanari & Sun (2018)
 - SOS relaxation t = 3, $O(n^{3/2} r \operatorname{polylog}(n))$ samples, poly algorithm
 - Barak & Moitra. JMLR (2016) ... connection to random 3-SAT & hardness result
 - "Max-quasinorm" constraint, random observations, $O(nt ||T||_{max}^2)$ samples
 - Ghadermarzy, Plan, Yilmaz. Information & Inference (2018)

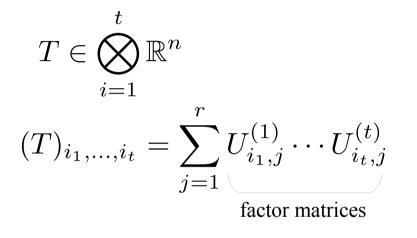
- Matrix results:
 - $O(nr \log(n))$ samples suffice, fast spectral algorithms
 - Keshavan, Montanari, Oh. JMLR (2010); early work by Fazel, Recht, Candes, inter alia
- Tensor results:
 - Flatten, $O(n^{t/2} r \operatorname{polylog}(n))$ samples, matrix algorithms
 - Gandy, Recht, Yamada (2011); Mu et al. (2014); Montanari & Sun (2018)
 - SOS relaxation t = 3, $O(n^{3/2} r \operatorname{polylog}(n))$ samples, poly algorithm
 - Barak & Moitra. JMLR (2016) ... connection to random 3-SAT & hardness result
 - "Max-quasinorm" constraint, random observations, $O(nt ||T||_{max}^2)$ samples
 - Ghadermarzy, Plan, Yilmaz. Information & Inference (2018)
 - Deterministic observations? Communication complexity & rank
 - Musco, Musco, Woodruff. Arxiv (2020) ... polynomial algorithms if rank is relaxed, very relevant for us, but different objective

- Improved understanding of the *max-quasinorm*
 - New inequalities, rank bounds, relationship to an atomic norm

- Improved understanding of the *max-quasinorm*
 - New inequalities, rank bounds, relationship to an atomic norm
- Hypergraph sampling model
 - Construction from expander graphs, new mixing inequality

- Improved understanding of the *max-quasinorm*
 - New inequalities, rank bounds, relationship to an atomic norm
- Hypergraph sampling model
 - Construction from expander graphs, new mixing inequality
- Deterministic bound of generalization error for completion $\min_T \|T\|_{\max} \text{ s.t. } \|\Omega * (T-Z)\| \leq \delta$

Tensor notation setup



order *t*

rank-*r* tensor (CP), *r* n t = # parameters

 $T = U^{(1)} \circ \cdots \circ U^{(t)}$ $T \otimes S, \qquad T * S$

shorthand for rank decomposition

Kronecker, Hadamard products

Overview

- 1) Introduction
- 2) Tensor complexity: norms & quasinorms
- 3) Hypergraph observation model
- 4) Tensor completion bound

Matrix complexity

Matrix complexity

• Rank $\operatorname{rank}(A) = \sum_{i} \mathbb{1}_{\{\sigma_i \neq 0\}}$

Matrix complexity

- Rank $\operatorname{rank}(A) = \sum_{i} \mathbb{1}_{\{\sigma_i \neq 0\}}$
- Nuclear/trace norm

$$\|A\|_* = \sum_i |\sigma_i| = \min_{A=UV^{\mathsf{T}}} \|U\|_F \|V\|_F = \min_{A=UV^{\mathsf{T}}} \frac{1}{2} (\|U\|_F^2 + \|V\|_F^2)$$

Srebro & Shraibman. COLT (2005)

 $||A||_{\max} = \min_{UV^{\intercal}=A} ||U||_{2,\infty} ||V||_{2,\infty} \text{ where } ||U||_{2,\infty} = \max_{i} ||U_{i,:}||_{2}$

$$||A||_{\max} = \min_{UV^{\intercal}=A} ||U||_{2,\infty} ||V||_{2,\infty} \text{ where } ||U||_{2,\infty} = \max_{i} ||U_{i,:}||_{2}$$

Functional analysts call it $\gamma_2(A)$... factorization through L_2 Tomczak-Jaegermann 1989

$$||A||_{\max} = \min_{UV^{\intercal}=A} ||U||_{2,\infty} ||V||_{2,\infty} \text{ where } ||U||_{2,\infty} = \max_{i} ||U_{i,:}||_{2}$$

Functional analysts call it $\gamma_2(A)$... factorization through L_2 $_{\rm Tomczak-Jaegermann}$ 1989

Communication complexity & discrepancy Linial et al. 2007; Lee et al. 2008; Matoušek et al. 2014

$$||A||_{\max} = \min_{UV^{\intercal}=A} ||U||_{2,\infty} ||V||_{2,\infty} \text{ where } ||U||_{2,\infty} = \max_{i} ||U_{i,:}||_{2,\infty}$$

Functional analysts call it $\gamma_2(A)$... factorization through L_2 Tomczak-Jaegermann 1989

Communication complexity & discrepancy Linial et al. 2007; Lee et al. 2008; Matoušek et al. 2014

Matrix completion, incoherence, leverage Srebro & Shraibman 2005; Heiman et al. 2014; Cai & Zhou 2016; Foucart et al. 2017

Max-quasinorm of a tensor $\|T\|_{\max} = \min_{T=U^{(1)}\circ\cdots\circ U^{(t)}} \prod_{i=1}^{t} \|U^{(i)}\|_{2,\infty}$

Ghadermarzy, Plan, Yilmaz. Information & Inference (2018)

Max-quasinorm of a tensor
$$\|T\|_{\max} = \min_{T=U^{(1)}\circ\cdots\circ U^{(t)}} \prod_{i=1}^{t} \|U^{(i)}\|_{2,\infty}$$

Ghadermarzy, Plan, Yilmaz. Information & Inference (2018)

Lemma 1. Let $t \ge 2$, then any two order-t tensors T and S of the same shape satisfy the following properties:

1.
$$||T||_{\max} = 0$$
 if and only if $T = 0$.

2.
$$||cT||_{\max} = |c|||T||_{\max}$$
, where $c \in \mathcal{R}$.

3.
$$||T + S||_{\max} \le \left(||T||_{\max}^{2/t} + ||S||_{\max}^{2/t} \right)^{t/2} \le 2^{t/2-1} \left(||T||_{\max} + ||S||_{\max} \right).$$

p-norm, p = 2/tDilworth (1985) quasi-triangle inequality

New results for max-qnorm

Theorem 1. Let $T \in \bigotimes_{i=1}^{t} n_i$ and $S \in \bigotimes_{i=1}^{t} m_i$, then:

1. $||T_{I_1,\ldots,I_t}||_{\max} \leq ||T||_{\max}$ for any subsets of indices $I_i \subseteq [n_i]$

- 2. $||T \otimes S||_{\max} \le ||T||_{\max} ||S||_{\max}$
- 3. $||T * S||_{\max} \leq ||T \otimes S||_{\max}$, where $T, S \in \bigotimes_{i=1}^{t} n_i$
- 4. $||T * T||_{\max} \le ||T||_{\max}^2$

Generalizes a number of results in "A Direct Product Theorem for Discrepancy". Lee, Shraibman, Špalek (2008)

Comparison to $\ell_{\infty}^{n^t}$

Lower bound: $||T||_{\max} \ge \max_{1 \le i \le t} ||T_{[i]}||_{\max} \ge |T|_{\infty}$

Comparison to $\ell_{\infty}^{n^t}$

Lower bound:
$$||T||_{\max} \ge \max_{1 \le i \le t} ||T_{[i]}||_{\max} \ge |T|_{\infty}$$

Ghadermarzy et al. showed
$$||T||_{\max} \leq \sqrt{r^{t(t-1)}} \cdot |T|_{\infty}$$

Comparison to
$$\ell_{\infty}^{n^t}$$

Lower bound: $||T||_{\max} \ge \max_{1 \le i \le t} ||T_{[i]}||_{\max} \ge |T|_{\infty}$

Ghadermarzy et al. showed $||T||_{\max} \leq \sqrt{r^{t(t-1)}} \cdot |T|_{\infty}$

But for a matrix, $||A||_{\max} \leq \sqrt{r} \cdot |A|_{\infty}$

Comparison to
$$\ell_{\infty}^{n^t}$$

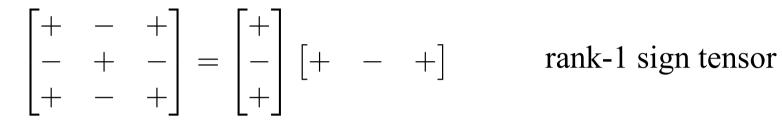
Lower bound:
$$||T||_{\max} \ge \max_{1 \le i \le t} ||T_{[i]}||_{\max} \ge |T|_{\infty}$$

Ghadermarzy et al. showed
$$||T||_{\max} \leq \sqrt{r^{t(t-1)}} \cdot |T|_{\infty}$$

But for a matrix,
$$||A||_{\max} \le \sqrt{r} \cdot |A|_{\infty}$$

A guess: $||T||_{\max} \le \sqrt{r^{t-1}} \cdot |T|_{\infty}$

Sign tensors & another norm



Sign nuclear norm:

$$||T||_{\pm} = \inf\left\{\sum_{i=1}^{r} |\alpha_i| \mid T = \sum_{i=1}^{r} \alpha_i S_i \text{ where } \alpha_i \in \mathbb{R}, \operatorname{rank}_{\pm}(S_i) = 1\right\}$$

Relation between sign and max-qnorm

Lemma 2. The sign nuclear norm and max-qnorm satisfy

$||T||_{\pm} \le K_G^{t-1} ||T||_{\max},$

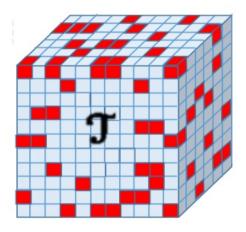
where K_G is the Grothendieck constant over \mathbb{R} .

(Tightens a result by Ghadermarzy et al.)

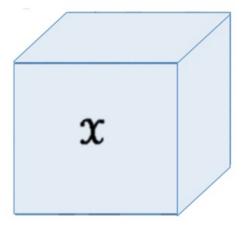
Overview

- 1) Introduction
- 2) Tensor complexity: norms & quasinorms
- 3) Hypergraph observation model
- 4) Tensor completion bound

Modeling observations



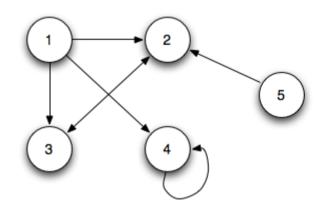
Incomplete Data



Complete Data

sparse binary mask

Adjacency matrix of a graph



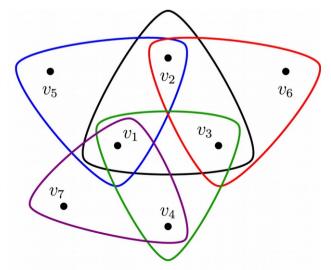
	1	2	23	3 4	- 5	
--	---	---	----	-----	-----	--

1	0	1	1	1	0	
2	0	0	1	0	0	
3	0	1	0	0	0	
4	0	0	0	1	0	
5	0	1	0	0	0	

Hypergraph \rightarrow Adjacency tensor

Properties we require

- *t*-uniform: all hyperedges contain *t* vertices
- *t*-partite: non-symmetric tensors



Lofty goal: *H* has "good" mixing

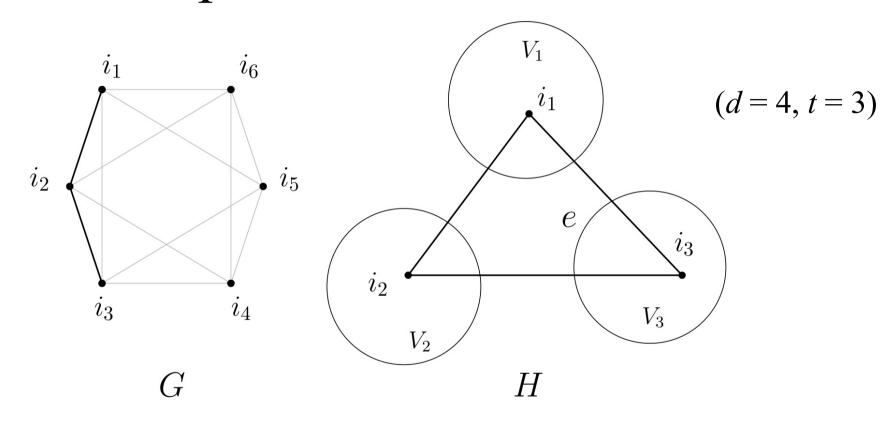
$$|e(V_1,\ldots,V_t) - \alpha |V_1| \cdots |V_t|| \leq \lambda \sqrt{|V_1| \cdots |V_t|}$$

$$\lambda = \|T - \alpha J\|_{\sigma}$$

"Second eigenvalue" of $T(H)$

$$||T||_{\sigma} = \sup_{v_1, \dots, v_t \in S^{n-1}} \left| \sum_{i_1, \dots, i_t=1}^n T_{i_1, \dots, i_t} v_1(i_1) \cdots v_t(i_t) \right|$$

Expander construction



Alon et al. Computational Complexity (1995) Bilu & Hoory. EJ Combinatorics (2004)

has *nd*^{t-1} many edges

(Weak) mixing lemma

Lemma 3. Construct H from the d-regular base graph G. Then:

$$\left|\frac{e(W_1,\ldots,W_t)}{nd^{t-1}} - \prod_{i=1}^t \alpha_i\right| \le \left(\left(1 + \frac{\lambda}{d}\right)^{t-1} - 1\right) \min\left\{\frac{1}{4}, \prod_{i=1}^t \max\left\{\sqrt{\alpha_i}, \sqrt{1 - \alpha_i}\right\}\right\}$$

where

$$\alpha_i = \frac{|W_i|}{n}$$
 and $\lambda = \lambda_2(G).$

Tightens results from Alon et al. (1995); Bilu & Hoory (2004)

Overview

- 1) Introduction
- 2) Tensor complexity: norms & quasinorms
- 3) Hypergraph observation model
- 4) Tensor completion bound

• Suppose we can *solve*

$$\hat{T} = \operatorname{argmin}_{T'} \|T'\|_{\max} \text{ s.t. } \|\Omega * (T' - Z)\|_F \le \delta$$

• Suppose we can *solve*

$$\hat{T} = \operatorname{argmin}_{T'} \|T'\|_{\max} \text{ s.t. } \|\Omega * (T' - Z)\|_F \leq \delta$$

observation mask
i.e. adjacency tensor

• Suppose we can *solve*

$$\hat{T} = \operatorname{argmin}_{T'} \|T'\|_{\max} \text{ s.t. } \|\Omega * (T' - Z)\|_F \leq \delta$$
observation mask
i.e. adjacency tensor
data

• Suppose we can *solve*

 $\hat{T} = \operatorname{argmin}_{T'} \|T'\|_{\max} \text{ s.t. } \|\Omega * (T' - Z)\|_F \leq \delta$ observation mask i.e. adjacency tensor data

noise level

• Suppose we can *solve* noise level

$$\hat{T} = \operatorname{argmin}_{T'} \|T'\|_{\max} \text{ s.t. } \|\Omega * (T' - Z)\|_F \leq \delta$$

observation mask
i.e. adjacency tensor
data

Theorem 2:

$$\frac{1}{n^t} \|\hat{T} - T\|_F^2 \le (4K_G)^{t-1} \|T\|_{\max}^2 \left(\left(1 + \frac{\lambda}{d}\right)^{t-1} - 1 \right) + 4\delta^2$$

Sample complexity

- # observations $|E(H)| = nd^{t-1}$
- use an expander $G \implies \frac{\lambda}{d} = \frac{1}{\sqrt{d}}$

Required # samples:

$$|E| = n \left(\frac{(t-1)(4K_G)^{t-1} ||T||_{\max}^2}{\varepsilon} \right)^{2(t-1)}$$

1) Write a tensor Q decomposed into sign tensors

Write a tensor *Q* decomposed into sign tensors
 Interpret rank-1 sign tensor as indicator of sets

- 1) Write a tensor Q decomposed into sign tensors
- 2) Interpret rank-1 sign tensor as indicator of sets
- 3) Use mixing lemma to bound variation from sample

$$\frac{1}{n^t} \sum_{e \in [n]^t} Q_e - \frac{1}{nd^{t-1}} \sum_{e \in E} Q_e \left| \le 2^{t-2} \left(\left(1 + \frac{\lambda}{d} \right)^{t-1} - 1 \right) \|Q\|_{\pm} \right)^{t-1} \right| \|Q\|_{\pm}$$

1) Take $Q = (\hat{T} - T) * (\hat{T} - T)$ squared residuals

2) Then we have:

$$\begin{aligned} \|Q\|_{\pm} &\leq 2^{t-2} K_G^{t-1} \left(\|\hat{T}\|_{\max} + \|T\|_{\max} \right)^2 \\ &\leq 2^t K_G^{t-1} \|T\|_{\max}^2 \end{aligned}$$

Conclusions

- New inequalities for tensor complexity measures
- Better weak mixing for expander hypergraph
- New analysis of tensor completion
 - Linear dependence on *n*
 - Better bound possible with 2^{nd} eigenvalue of H

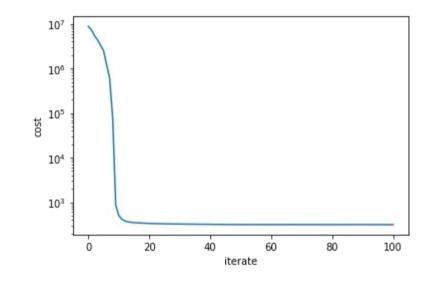
• Difficulty of optimization?

- Difficulty of optimization?
- Barak & Moitra. JMLR (2016): SOS + $\|\cdot\|_*$
 - random observations \leftrightarrow random 3-SAT, *conjectured* hard
 - sign tensor = solution, observations = clauses

- Difficulty of optimization?
- Barak & Moitra. JMLR (2016): SOS + $\|\cdot\|_*$
 - random observations \leftrightarrow random 3-SAT, *conjectured* hard
 - sign tensor = solution, observations = clauses
- Approx solution, get bound w/ $\max(\|\hat{T}\|_{\max}, \|T\|_{\max})$

- Difficulty of optimization?
- Barak & Moitra. JMLR (2016): SOS + $\|\cdot\|_*$
 - random observations \leftrightarrow random 3-SAT, *conjectured* hard
 - sign tensor = solution, observations = clauses
- Approx solution, get bound w/ $\max(\|\hat{T}\|_{\max}, \|T\|_{\max})$
- Suggests even approx solutions hard!

Early numerical experiments



n = 200, t = 3, r = 4, |E| = 55224~ 0.7% Coordinate descent on factors $U^{(i)}$

- $r > \operatorname{rank}(T)$ helps
- overfit residuals okay
- stagnation for low rank, too few observations

• Acknowledgements:

- coauthor: Yizhe Zhu
- Ioana Dumitriu
- Paul Beame
- Adi Shraibman

• Funding:

- NSF DMS-1712630 (YZ)

Thank

you!

"Deterministic tensor completion with hypergraph expanders"

https://arxiv.org/abs/1910.10692

• Banach-Mazur distance:

 $d(X,Y) = \inf\{\|L\|_{X \to Y} \|L^{-1}\|_{Y \to X} : L \text{ isomorphism}\}\$

• Banach-Mazur distance:

 $d(X,Y) = \inf\{\|L\|_{X \to Y} \|L^{-1}\|_{Y \to X} : L \text{ isomorphism}\}\$

• By Dilworth (1985), *r*-dim *p*-norm space $d(X, \ell_2) \le r^{\frac{2}{p} - \frac{1}{2}}$

• Banach-Mazur distance:

 $d(X,Y) = \inf\{\|L\|_{X \to Y} \|L^{-1}\|_{Y \to X} : L \text{ isomorphism}\}\$

• By Dilworth (1985), *r*-dim *p*-norm space $d(X, \ell_2) \le r^{\frac{2}{p} - \frac{1}{2}}$

• Let
$$Z = \operatorname{span}\left\{U_{:,i}^{(1)} \circ \cdots \circ U_{:,i}^{(t)}\right\}_{i=1}^r$$
, $X = \left(\mathbb{R}^{n^t}, \|\cdot\|_{\max}\right) \cap Z$, $Y = \left(\mathbb{R}^{n^t}, |\cdot|_{\infty}\right) \cap Z$

• Banach-Mazur distance:

 $d(X,Y) = \inf\{\|L\|_{X \to Y} \|L^{-1}\|_{Y \to X} : L \text{ isomorphism}\}\$

- By Dilworth (1985), *r*-dim *p*-norm space $d(X, \ell_2) \le r^{\frac{2}{p} \frac{1}{2}}$
- Let $Z = \operatorname{span}\left\{U_{:,i}^{(1)} \circ \cdots \circ U_{:,i}^{(t)}\right\}_{i=1}^r$, $X = \left(\mathbb{R}^{n^t}, \|\cdot\|_{\max}\right) \cap Z$, $Y = \left(\mathbb{R}^{n^t}, |\cdot|_{\infty}\right) \cap Z$
- Then $d(X, Y) \le d(X, \ell_2)d(Y, \ell_2) \le \sqrt{r^t}$

• Banach-Mazur distance:

 $d(X,Y) = \inf\{\|L\|_{X \to Y} \|L^{-1}\|_{Y \to X} : L \text{ isomorphism}\}\$

- By Dilworth (1985), *r*-dim *p*-norm space $d(X, \ell_2) \le r^{\frac{2}{p} \frac{1}{2}}$
- Let $Z = \operatorname{span}\left\{U_{:,i}^{(1)} \circ \cdots \circ U_{:,i}^{(t)}\right\}_{i=1}^r$, $X = \left(\mathbb{R}^{n^t}, \|\cdot\|_{\max}\right) \cap Z$, $Y = \left(\mathbb{R}^{n^t}, |\cdot|_{\infty}\right) \cap Z$
- Then $d(X, Y) \le d(X, \ell_2)d(Y, \ell_2) \le \sqrt{r^t}$
- Consider norm inequality $c|T|_{\infty} \le ||T||_{\max} \le C|T|_{\infty}$