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What is a tensor?

For us, a multi-dimensional array

Also: 
● multi-linear operator
● homogeneous polynomial
● different than a matrix

Excellent introduction: Kolda & Bader. SIAM Rev (2009)



  

Many problems cast as tensor completion

● Use low-rank structure to infer missing data

Song, Ge, Caverlee, Hu. KDD (2019)



  

But tensor rank is not like in matrices
● More than one version (CP/Kruskal, Tucker, unfolding rank)

● “Most tensor problems are NP-hard”, Hillar & Lim. ACM (2013)

Kolda & Bader (2009)
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– O(nr log(n)) samples suffice, fast spectral algorithms
– Keshavan, Montanari, Oh. JMLR (2010); early work by Fazel, Recht, Candes, inter alia

● Tensor results: 
– Flatten, O(nt/2 r polylog(n)) samples, matrix algorithms 
– Gandy, Recht, Yamada (2011); Mu et al. (2014); Montanari & Sun (2018)

– SOS relaxation t = 3, O(n3/2 r polylog(n)) samples, poly algorithm
– Barak & Moitra. JMLR (2016) … connection to random 3-SAT & hardness result

– “Max-quasinorm” constraint, random observations,  O(nt ||T ||2
max) samples

– Ghadermarzy, Plan, Yilmaz. Information & Inference (2018)

– Deterministic observations? Communication complexity & rank
– Musco, Musco, Woodruff. Arxiv (2020) … polynomial algorithms if rank is relaxed, very relevant for us, but different objective
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Outline of our results
● Improved understanding of the max-quasinorm

– New inequalities, rank bounds, relationship to an atomic norm

● Hypergraph sampling model
– Construction from expander graphs, new mixing inequality

● Deterministic bound of generalization error for completion



  

Tensor notation setup

order t

rank-r tensor (CP), 
r n t = # parameters

factor matrices

shorthand for rank decomposition

Kronecker, Hadamard products
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Matrix complexity
● Rank
● Nuclear/trace norm

Srebro & Shraibman. COLT (2005)
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Max-norm for matrices

Functional analysts call it γ
2
(A) ... factorization through L

2
 

Tomczak-Jaegermann 1989

Communication complexity & discrepancy 
Linial et al. 2007; Lee et al. 2008; Matoušek et al. 2014

Matrix completion, incoherence, leverage
Srebro & Shraibman 2005; Heiman et al. 2014; Cai & Zhou 2016; Foucart et al. 2017



  

Max-quasinorm of a tensor

Ghadermarzy, Plan, Yilmaz. Information & Inference (2018)



  

Max-quasinorm of a tensor

Ghadermarzy, Plan, Yilmaz. Information & Inference (2018)

p-norm, p = 2/t
Dilworth (1985)

quasi-triangle inequality



  

New results for max-qnorm

Generalizes a number of results in 
“A Direct Product Theorem for Discrepancy”. Lee, Shraibman, Špalek (2008)
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Sign tensors & another norm

rank-1 sign tensor

Sign nuclear norm:



  

Relation between sign and max-qnorm

(Tightens a result by Ghadermarzy et al.)
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Modeling observations

Image: Song, Ge, Caverlee, Hu. KDD (2019)

sparse binary mask



  

Adjacency matrix of a graph

Image: David Babcock,  http://ycpcs.github.io/cs360-spring2015/lectures/lecture15.html



  

Hypergraph → Adjacency tensor

Properties we require
● t-uniform:  all hyperedges contain t vertices
● t-partite:     non-symmetric tensors

Image: Akhtar & Maity. Disc Appl Math (2017)



  

Lofty goal: H has “good” mixing

“Second eigenvalue” of T(H)



  

Expander construction

(d = 4, t = 3)

has ndt-1 many edgesAlon et al. Computational Complexity (1995)
Bilu & Hoory. EJ Combinatorics (2004)



  

(Weak) mixing lemma

Tightens results from Alon et al. (1995);  Bilu & Hoory (2004)
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Max-qnorm penalized guarantee
● Suppose we can solve

observation mask
i.e. adjacency tensor

data

noise level

Theorem 2:

Ghadermarzy, Plan, Yilmaz (2018)
Heiman et al. (2014)
Brito, Dumitriu, Harris (2018)



  

Sample complexity
● # observations
● use an expander G

Required # samples:
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Proof sketch (part 1)

1) Write a tensor Q decomposed into sign tensors

2) Interpret rank-1 sign tensor as indicator of sets

3) Use mixing lemma to bound variation from sample



  

Proof sketch (part 2)

1) Take                                 squared residuals

2) Then we have:



  

Conclusions
● New inequalities for tensor complexity measures
● Better weak mixing for expander hypergraph
● New analysis of tensor completion

– Linear dependence on n

– Better bound possible with 2nd eigenvalue of H
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Computational challenges
● Difficulty of optimization?

● Barak & Moitra. JMLR (2016): SOS +  
– random observations ↔ random 3-SAT, conjectured hard

– sign tensor = solution, observations = clauses

● Approx solution, get bound w/

● Suggests even approx solutions hard!



  

Early numerical experiments

Coordinate descent
on factors

● r > rank(T) helps
● overfit residuals okay
● stagnation for low rank, 

too few observations

~ 0.7%
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Ideas for                     
● Banach-Mazur distance:

● By Dilworth (1985), r-dim p-norm space 

● Let

● Then

● Consider norm inequality
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