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● Ph.D. in Applied Math from UW, December 2017
● Background studying networks, dynamics, & neuroscience
● Employed by Raj Rao & Bing Brunton (Biology)

– Developing methods for clustering human brain recordings
– Dynamical systems-based timeseries methods in general

● My hope for postdoc:
– Get to know YOU!     … CS
– Strengthen theoretical machine learning understanding, esp. RKHS
– Teaching, advising, etc.
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● Example statistics:
– Average # connections (degree)
– Number of cycles

– Other subgraph counts

● Community structure
– Block models

– Multi-partite graphs

Motivation: random graphs can model real world

Joshua Mendoza
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● Spectral “gap” is large → good expansion
● Many applications:

– Mixing rates of Markov chains

– Nonlinear dynamics on networks, e.g. synchronization conditions
– Community detection, spectral clustering

– Error correcting codes constructed from graphs
– Matrix completion

● What’s your favorite, and what did I miss?



  

Bipartite, biregular random graph model

Fixed d’s (as n grows) mean these graphs are very sparse
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Previous work: mostly d-regular graphs

● Friedman (2003, 2004) – first gap proof using selective trace
● Alon (1986) – “gap conjecture” from lower bound
● Bordenave (2015) – simplified proof using tangle-free walks
● Angel, Friedman, Hoory (2015) – lift model
● Marcus, Spielman, Srivastava (2013) – gap of bipartite lifts

Feng & Li, Li & Solé (1996)
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Our main result

First result of this kind for rectangular matrices, 
conjectured to hold for d-regular adjacency w/ d > 2 
by Costello & Vu (2008)

Recall:

Attains Alon-Boppana



  

Non-backtracking theorem

Main result follows from this
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Sketch of proof

1)  Look at non-backtracking matrix B

2)  Subtract leading eigenspace: 

3)  Use moments to bound matrix norm:

Trace depends on diagonals of this matrix

Diagonals = non-backtracking circuits

4) Leading order is from circuits that are trees

5) Relate spectra of B and A   (Ihara-Bass formula, “zeta” function)



  

Graphical depiction of the spectra

gap

leading

zeros

gap bound

Ihara-Bass:



  

So, wouldn’t it be simpler to work with A directly?

● But it doesn’t work. Take d-regular example:

Goal:

But:

Event = existence of isolated K
d+1

 
occurs with non-negligible prob.

Following Bordenave (2015), Friedman



  

Reason: “Tangled” paths

● Elucidated by Friedman, Bordenave

l-tangle-free: all l-neighborhoods contain at most one cycle
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“Tree-like property”

Proof following Lubetzky & Sly (2010)

1)Configuration model: random matching of half-edges
2)Consider depth i exploration of neighborhood
3)At most di+1 half-edges to match here
4)Consider event A

i,k
 : kth edge in depth i → cycle

candidates

total unmatched

Finish with following & union bound over vertices



  

How this appears in the proof:

● We form a bound for this: 

Count non-backtracking circuits of diff types
Weight by expectation
Use tangle-free property

Example: k = l = 2
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Gap

OK: on to applications of the gap

● Spectral “gap” is large → good expansion
● Many applications:

– Mixing rates of Markov chains
– Community detection via spectral clustering

– Error correcting codes constructed from graphs
– Matrix completion

● Common tool, the expander mixing Lemma:

A proof in: De Winter, Schillewaert, Verstraete (2012)



  

Matrix completion

Data points are “edges” in the graph: 

Observed Find



  

Expansion is related to complexity

Solve the problem:

where

So, if observations from (d1, d2)-regular graph:

Extends & improves result of Heiman, Schechtman, Shraibman (2014)



  

Conclusions

● Proof that bipartite biregular graphs have large gap 
“Ramanujan”
– (Hopefully) simpler to understand than in past

● Surprising side result: full rank matrix X in
● Highlighted some nice applications:

– Mostly showing how knowing gap yields explicit bounds
● Community detection in general
● LDPC error correcting codes
● Matrix completion

– New result for rectangular matrix completion



  

Thank you
for listening!

Scott Rinckenberger
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