Connections between dimensionality and network sparsity

Kameron Decker Harris

University of Washington Computer Science, Biology

See our paper

"Optimal synaptic connectivity" Litwin-Kumar, Harris, Axel Sompolinsky, and Abbott. Neuron (2017)

> Cerebellum from Eccles et al. (1967)

Olfactory network of Drosophila

Output neuron decides: good smell or bad smell?

See related work to ours: Cayco-Gajic, Clopath, Silver (2017) Dasgupta, Stevens, Navlakha (2017)

Common brain network structure: 2-layer sparse expansion

Parameters:

- K small
- M >> N, both large

Why such *network sparsity*?

Mushroom body (olfaction)

- N = 50 and M = 2,000
- 40-fold expansion
- K = 7 inputs per mixed cell

Cerebellum (motor control)

- N = 7,000 and M = 210,000
- 30-fold expansion
- K = 4 inputs per mixed cell

Some of the previous theories: Marr (1969); Albus (1971); Hansel & van Vreeswijk (2012); Rigotti et al. (2013); Barak et al. (2013); Babadi & Sompolinsky (2014)

Linear vs. nonlinear separability

Expectation: Expanding dimensionality improves pattern separation

History of a dimensionality measure

$$\dim(\mathbf{x}) = \frac{\left(\sum_{i=1}^{M} \lambda_i\right)^2}{\sum_{i=1}^{M} \lambda_i^2}$$

Eigenvalues of mixed-layer covariance

Vocabulary "characteristic," linguisticsYule (1944)Diversity measure, ecologyFisher (1943), Simpson (1949)Rényi entropy, mathematicsRényi (1961)Participation ratio/purity, physicsBell & Dean (1970)Dimensionality, neuroscienceAbbott, Rajan, Sompolinsky (2009)

Sparsity maximizes dimensionality

Arrows = avg degree observed in brains

Sparsity can improve classification

Learning input-mixed weights most useful only in dense networks

THE

MIGHTY

CORTEX

Image: Christophe Leterrier

Conclusions

- Sparsity optimal when features are random
- Dense connectivity if features are learned
- Results suggest principles of
 - Olfaction and cerebellum
 - Contrasting with cortex
- Coding sparsity important

(Fast?)Food for thought

Review: "Randomness in neural networks" by Scardapane & Wang (2017)

- "Random features" show up many places
 - Rosenblatt's perceptron (1958), expansion weights
 - Functional link networks & universal approximation

Barron (1993), Pao, Park, Sobajic (1994), Igelnik & Pao (1995)

- Radial basis functions Broomhead & Lowe (1988)
- Random features ~ kernels Rahimi & Recht (2007)
- Deep network kernels Mairal et al (2014), Daniely, Frostig, Singer (2016)
- Meaning of dimensionality in statistical learning
 - Decay rate of eigenvalues in some basis (RKHS)
 - How smooth is your function?

Crumbs...

- Remains to be seen how often sparse, random features yield benefits with real data
- Preliminary analysis with Merck dataset (chemical features) says yes:

linear regression	score	
avg training score	0.675	
avg testing score	0.613	
2-layer dense network		
avg training score	0.779	
avg testing score	0.670	
2-layer sparse network		rel. diff
avg training score	0.751	-3.5%
avg testing score	0.659	-1.7%

Thank you!

- Funding:
 - UW NIH Big Data for Genomics and Neuroscience T32LM012419
 - Boeing Fellowship
 - Washington Research Foundation
- Collaborators:
 - Ashok Litwin-Kumar, Larry Abbott, Richard Axel (Columbia); Haim Sompolinsky (Harvard & Hebrew U.)