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Cerebellum
from Eccles et al. (1967)

See our paper

“Optimal synaptic connectivity”
Litwin-Kumar, Harris, Axel 
Sompolinsky, and Abbott. 
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Olfactory network of Drosophila

hhmi.org

Output neuron decides: 
good smell or bad smell?

See related work to ours:
Cayco-Gajic, Clopath, Silver (2017)
Dasgupta, Stevens, Navlakha (2017)



  

Common brain network structure: 
2-layer sparse expansion

Parameters:
● K small
● M >> N, both large



  

Why such network sparsity?

Mushroom body (olfaction)
● N = 50 and M = 2,000
● 40-fold expansion
● K = 7 inputs per mixed cell

 

Cerebellum (motor control)
● N = 7,000 and M = 210,000
● 30-fold expansion
● K = 4 inputs per mixed cell

Some of the previous theories:
Marr (1969); Albus (1971); Hansel & van Vreeswijk (2012); Rigotti et al. (2013); 
Barak et al. (2013); Babadi & Sompolinsky (2014)



  

Linear vs. nonlinear separability

H.Lohninger: Teach/Me Data Analysis, Springer-Verlag, Berlin-New York-Tokyo, 1999.



  

https://www.researchgate.net/publication/262800142_Lecture_Notes_on_the_Kernel_Trick_I

Nonlinear map
2-D to 3-D

Expectation: 
Expanding dimensionality improves
pattern separation



  

History of a dimensionality measure

Vocabulary “characteristic,” linguistics                       Yule (1944)

Diversity measure, ecology                    Fisher (1943), Simpson (1949)

Rényi entropy, mathematics                                      Rényi (1961)

Participation ratio/purity, physics                                    Bell & Dean (1970)

Dimensionality, neuroscience             Abbott, Rajan, Sompolinsky (2009)

Eigenvalues
of mixed-layer 
covariance



  

Sparsity maximizes dimensionality

Arrows = avg degree observed in brains



  

Sparsity can improve classification
Classifier must also 
denoise

Uncorrelated random 
● Input patterns
● Binary valence
● Binary noise

Noise 
amplification
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Learning input-mixed weights
most useful only in dense networks

Learning benefit



  

THE

MIGHTY

CORTEX

Image: Christophe Leterrier



  

Conclusions

● Sparsity optimal when features are random
● Dense connectivity if features are learned
● Results suggest principles of

– Olfaction and cerebellum

– Contrasting with cortex

● Coding sparsity important



  

(Fast?)Food for thought

● “Random features” show up many places
– Rosenblatt’s perceptron (1958), expansion weights

– Functional link networks & universal approximation          
                               Barron (1993), Pao, Park, Sobajic (1994), Igelnik & Pao (1995)

– Radial basis functions                   Broomhead & Lowe (1988)

– Random features ~ kernels               Rahimi & Recht (2007)

– Deep network kernels     Mairal et al (2014), Daniely, Frostig, Singer (2016) 

● Meaning of dimensionality in statistical learning
– Decay rate of eigenvalues in some basis (RKHS)

– How smooth is your function?

Review: “Randomness in neural networks” by Scardapane & Wang (2017)



  

Crumbs...

● Remains to be seen how often sparse, random 
features yield benefits with real data

● Preliminary analysis with Merck dataset 
(chemical features) says yes:

linear regression        score
avg training score       0.675
avg testing score        0.613
2-layer dense network
avg training score       0.779
avg testing score        0.670
2-layer sparse network            rel. diff
avg training score       0.751       -3.5%
avg testing score        0.659       -1.7%



  

Thank you!
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