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Flow reversals in action, from Ridouane et al. (2009)

(LoadingMovie)
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A familiar attractor
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Flow reversal significance

Example of regime changes,
transition between inherently different behaviors

(in thermosyphon: CW vs. CCW)

Other important examples:

climate shifts (glacial vs. interglacial)

weather patterns (El Niño, PDO)

desertification

Early warnings crucial for preventing catastrophes
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Forecasting scheme

1 CFD simulations represent
thermosyphon “truth”

I 2-D, O(104) discretization of
Navier-Stokes equations,
implemented in FLUENT
package

I observations made of mass
flow rate q (scalar)

2 EM (imperfect)
model makes the forecasts

3 simplest realistic DA experiment Steady temperature profile.
Image credit: Ridouane et al. (2009)
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The initial value problem

Data assimilation (DA) estimates the current state that minimizes future
forecast error, using past forecasts and observations
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DA algorithms tested

3D-Var
I constant background error
I simple and efficient
I operational many places

Extended Kalman Filter (EKF)
I background error propagated with adjoint model
I numerically costly, only for small models

Ensemble Kalman Filters (ETKF, EnSRF)
I ensemble of states represents current state + uncertainty
I no need for adjoint model
I numerically efficient
I ECMWF operational
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Multiple shooting parameter estimation
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3D-Var results for 300 s assimilation window
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Comparing DA algorithms – background error
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Assimilated thermosyphon attractor
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Forecast error during flow reversals
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Thermosyphon “weathermap” – regime duration
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Key result

There is a trend:

large x1-amplitudes lead to longer regimes
(immediately preceding new flow regime) (up to a point)
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Understanding the physical mechanism
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EKF assimilated perfect “storm”
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Flow reversal early warning

3 different tests:

1 Lead: lead forecast state moves into other regime

2 Bred vector: growth rate threshold
3 Slope:

I slope of linear fit of x2 vs. x1, from analysis
I inspired by hypothesis of viscous vs. thermal feedback, dates to

Welander (1967)

Skill scores (in %):

lead BV slope

TS 84 63 73
HR 97 97 77
FAR 13 36 7
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Window of stability: predicting regime duration
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3 probabilistic forecast of regime duration =⇒

Duration forecast
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Test RPS

lead 51%
BV 63%

slope 48%
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Wrapping up

DA effectively couples a low-dimensional, approximate model to
complex direct numerical simulations of the thermosyphon

Empirical techniques based on physics best predict flow reversals and
subsequent duration

Preprint available at my personal website
http://uvm.edu/∼kharris/papers/thermosyphon-da.pdf
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Laboratory thermosyphon

Our techniques should be applicable to thermosyphon experiments
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3D-Var results for 120 s assimilation window
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Early warning: more on the slope test
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More flow reversal occurance stats

1 Lead:
TS= 84%, FAR=13%,
HR=97%, n=160542

2 BV:
TS= 63%, FAR=36%,
HR=97%, n=124118

3 Slope:
TS= 77%, FAR=7.1%,
HR=82%, n=157978

Observed
Yes No

Fcast
Yes 4115 639
No 135 155653

Observed
Yes No

Fcast
Yes 4131 2323
No 119 122522

Observed
Yes No

Fcast
Yes 3473 266
No 777 153426
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