Forecasting Flow Reversals in a Chaotic Toy Climate

Kameron Decker Harris

Christopher M. Danforth

University of Vermont

kharris@uvm.edu

May 21, 2011



# Outline

#### Study methodology

- Thermosyphon
- Experimental setup

#### 2 The forecasting problem

- Data assimilation
- Model tuning

#### 3 Results

- DA state estimation
- Flow reversal forecasting

#### Conclusions

#### Natural convection

- Rayleigh-Bénard (2 plates)
- thermosyphon (loop, pipes)
- dynamical equations of Ehrhard & Müller (1990)
- "toy climate"



#### Natural convection

- Rayleigh-Bénard (2 plates)
- thermosyphon (loop, pipes)
- dynamical equations of Ehrhard & Müller (1990)
- "toy climate"



#### Natural convection

- Rayleigh-Bénard (2 plates)
- thermosyphon (loop, pipes)
- dynamical equations of Ehrhard & Müller (1990)
- "toy climate"



#### Natural convection

- Rayleigh-Bénard (2 plates)
- thermosyphon (loop, pipes)
- dynamical equations of Ehrhard & Müller (1990)

• "toy climate"



#### Natural convection

- Rayleigh-Bénard (2 plates)
- thermosyphon (loop, pipes)
- dynamical equations of Ehrhard & Müller (1990)
- "toy climate"



#### Natural convection

- Rayleigh-Bénard (2 plates)
- thermosyphon (loop, pipes)
- dynamical equations of Ehrhard & Müller (1990)
- "toy climate"

EM state vars:

- $x_1 \propto u$ , velocity $x_2 \propto \Delta T_{3-9}$ , horiz
- $x_3 \propto \Delta T_{6-12}$ , vert



## Flow reversals in action, from Ridouane et al. (2009)

(LoadingMovie)

## A familiar attractor



60 s time-delay reconstruction mass flow rate (kg/s) in simulated thermosyphon



timeseries of horizontal temperature difference for laboratory thermosyphon

• we call zero-crossings flow reversals

## A familiar attractor



60 s time-delay reconstructionmass flow rate (kg/s) in simulated thermosyphon



timeseries of horizontal temperature difference for laboratory thermosyphon

• we call zero-crossings flow reversals

#### Example of regime changes,

transition between inherently different behaviors (in thermosyphon: CW vs. CCW)

Other important examples:

- climate shifts (glacial vs. interglacial)
- weather patterns (El Niño, PDO)
- desertification

#### Example of regime changes, transition between inherently different behaviors (in thermosyphon: CW vs. CCW)

#### Other important examples:

- climate shifts (glacial vs. interglacial)
- weather patterns (El Niño, PDO)
- desertification

## Example of regime changes,

transition between inherently different behaviors (in thermosyphon: CW vs. CCW)

#### Other important examples:

- climate shifts (glacial vs. interglacial)
- weather patterns (El Niño, PDO)
- desertification

### Example of regime changes,

transition between inherently different behaviors (in thermosyphon: CW vs. CCW)

#### Other important examples:

- climate shifts (glacial vs. interglacial)
- weather patterns (El Niño, PDO)
- desertification

## Example of regime changes,

transition between inherently different behaviors (in thermosyphon: CW vs. CCW)

#### Other important examples:

- climate shifts (glacial vs. interglacial)
- weather patterns (El Niño, PDO)

• desertification

## Example of regime changes,

transition between inherently different behaviors (in thermosyphon: CW vs. CCW)

Other important examples:

- climate shifts (glacial vs. interglacial)
- weather patterns (El Niño, PDO)
- desertification

#### Example of regime changes, transition between inherently different behaviors (in thermosyphon: CW vs. CCW)

Other important examples:

- climate shifts (glacial vs. interglacial)
- weather patterns (El Niño, PDO)
- desertification

# CFD simulations represent thermosyphon "truth"

- 2-D, O(10<sup>4</sup>) discretization of Navier-Stokes equations, implemented in FLUENT package
- observations made of mass flow rate q (scalar)
- EM (imperfect) model makes the forecasts
- implest realistic DA experiment



- CFD simulations represent thermosyphon "truth"
  - 2-D, O(10<sup>4</sup>) discretization of Navier-Stokes equations, implemented in FLUENT package
  - observations made of mass flow rate q (scalar)
- EM (imperfect) model makes the forecasts
- simplest realistic DA experiment



- CFD simulations represent thermosyphon "truth"
  - 2-D, O(10<sup>4</sup>) discretization of Navier-Stokes equations, implemented in FLUENT package
  - observations made of mass flow rate q (scalar)
- EM (imperfect) model makes the forest
- simplest realistic DA experiment



- CFD simulations represent thermosyphon "truth"
  - 2-D, O(10<sup>4</sup>) discretization of Navier-Stokes equations, implemented in FLUENT package
  - observations made of mass flow rate q (scalar)
- EM (imperfect) model makes the forecasts
- implest realistic DA experiment



- CFD simulations represent thermosyphon "truth"
  - 2-D, O(10<sup>4</sup>) discretization of Navier-Stokes equations, implemented in FLUENT package
  - observations made of mass flow rate q (scalar)
- EM (imperfect) model makes the forecasts
- implest realistic DA experiment



- CFD simulations represent thermosyphon "truth"
  - 2-D, O(10<sup>4</sup>) discretization of Navier-Stokes equations, implemented in FLUENT package
  - observations made of mass flow rate q (scalar)
- EM (imperfect) model makes the forecasts
- **③** simplest realistic DA experiment



## The initial value problem

*Data assimilation* (DA) estimates the current state that minimizes future forecast error, using past forecasts and observations



#### • 3D-Var

- constant background error
- simple and efficient
- operational many places
- Extended Kalman Filter (EKF)
  - background error propagated with adjoint model
  - numerically costly, only for small models
- Ensemble Kalman Filters (ETKF, EnSRF)
  - ensemble of states represents current state + uncertainty
  - no need for adjoint model
  - numerically efficient
  - ECMWF operational

- 3D-Var
  - constant background error
  - simple and efficient
  - operational many places
- Extended Kalman Filter (EKF)
  - background error propagated with adjoint model
  - numerically costly, only for small models
- Ensemble Kalman Filters (ETKF, EnSRF)
  - ensemble of states represents current state + uncertainty
  - no need for adjoint model
  - numerically efficient
  - ECMWF operational

- 3D-Var
  - constant background error
  - simple and efficient
  - operational many places
- Extended Kalman Filter (EKF)
  - background error propagated with adjoint model
  - numerically costly, only for small models
- Ensemble Kalman Filters (ETKF, EnSRF)
  - ensemble of states represents current state + uncertainty
  - no need for adjoint model
  - numerically efficient
  - ECMWF operational

- 3D-Var
  - constant background error
  - simple and efficient
  - operational many places
- Extended Kalman Filter (EKF)
  - background error propagated with adjoint model
  - numerically costly, only for small models
- Ensemble Kalman Filters (ETKF, EnSRF)
  - ensemble of states represents current state + uncertainty
  - no need for adjoint model
  - numerically efficient
  - ECMWF operational

## Multiple shooting parameter estimation



632 s/(time unit), 0.0136 (kg m/s)/( $x_1$  unit)

## 3D-Var results for 300 s assimilation window



## Comparing DA algorithms – background error



- Error relative to RMS mass flow rate
- Dashed lines for "perfect" and "useless" forecasts

#### Assimilated thermosyphon attractor



Color indicates bred vector growth rate, 30 s window

### Forecast error during flow reversals



Flow reversal occurance and regime duration hard to predict

## Thermosyphon "weathermap" - regime duration



There is a trend:

# large $x_1$ -amplitudes lead to longer regimes

(immediately preceding new flow regime) (up to a point)

## Understanding the physical mechanism



Kameron Decker Harris (UVM)

Flow Reversals Chaotic Toy Climate

## EKF assimilated perfect "storm"



Kameron Decker Harris (UVM)

Flow Reversals Chaotic Toy Climate

## EKF assimilated perfect "storm"



Kameron Decker Harris (UVM)

Flow Reversals Chaotic Toy Climate

#### 3 different tests:

- Lead: lead forecast state moves into other regime
- Is Bred vector: growth rate threshold

- **•** slope of linear fit of  $x_2$  vs.  $x_1$ , from analysis
- inspired by hypothesis of viscous vs. thermal feedback, dates to Welander (1967)

|                      |     | lead | BV | slope |
|----------------------|-----|------|----|-------|
| Skill scores (in %): | ΤS  | 84   | 63 | 73    |
|                      | HR  | 97   | 97 | 77    |
|                      | FAR | 13   |    | 7     |

#### 3 different tests:

- Lead: lead forecast state moves into other regime
- Is Bred vector: growth rate threshold

- **•** slope of linear fit of  $x_2$  vs.  $x_1$ , from analysis
- inspired by hypothesis of viscous vs. thermal feedback, dates to Welander (1967)

|                      |     | lead | BV | slope |
|----------------------|-----|------|----|-------|
| Skill scores (in %): | ΤS  | 84   | 63 | 73    |
|                      | HR  | 97   | 97 | 77    |
|                      | FAR | 13   |    | 7     |

3 different tests:

- Lead: lead forecast state moves into other regime
- Ø Bred vector: growth rate threshold

- **•** slope of linear fit of  $x_2$  vs.  $x_1$ , from analysis
- inspired by hypothesis of viscous vs. thermal feedback, dates to Welander (1967)

|                      |     | lead | BV | slope |
|----------------------|-----|------|----|-------|
| Skill scores (in %): | ΤS  | 84   | 63 | 73    |
|                      | HR  | 97   | 97 | 77    |
|                      | FAR | 13   |    | 7     |

3 different tests:

- Lead: lead forecast state moves into other regime
- Ø Bred vector: growth rate threshold

- slope of linear fit of x<sub>2</sub> vs. x<sub>1</sub>, from analysis
- inspired by hypothesis of viscous vs. thermal feedback, dates to Welander (1967)

|                      |     | lead | BV | slope |
|----------------------|-----|------|----|-------|
| Skill scores (in %): | ΤS  | 84   | 63 | 73    |
|                      | HR  | 97   | 97 | 77    |
|                      | FAR | 13   |    | 7     |

3 different tests:

- Lead: lead forecast state moves into other regime
- Ø Bred vector: growth rate threshold

- slope of linear fit of x<sub>2</sub> vs. x<sub>1</sub>, from analysis
- inspired by hypothesis of viscous vs. thermal feedback, dates to Welander (1967)

|                      |     | lead | ΒV | slope |
|----------------------|-----|------|----|-------|
| Skill scores (in %): | ΤS  | 84   | 63 | 73    |
|                      | HR  | 97   | 97 | 77    |
|                      | FAR | 13   | 36 | 7     |

3 different tests:

- Lead: lead forecast state moves into other regime
- Is Bred vector: growth rate threshold

- slope of linear fit of  $x_2$  vs.  $x_1$ , from analysis
- inspired by hypothesis of viscous vs. thermal feedback, dates to Welander (1967)

|                      |     | lead | ΒV | slope |
|----------------------|-----|------|----|-------|
| Skill scores (in %): | ΤS  | 84   | 63 | 73    |
|                      | HR  | 97   | 97 | 77    |
|                      | FAR | 13   | 36 | 7     |

# Window of stability: predicting regime duration



- measure maximum x<sub>1</sub> amplitude of the analysis/forecast state at the time a flow reversal is (correctly) forecast
- calculate likelihood of durations (discrete) using weathermap
- $\Im$  probabilistic forecast of regime duration ==

# Duration forecast skill

| Test | RPS |
|------|-----|
| lead | 51% |
| BV   | 63% |
|      | 48% |

# Window of stability: predicting regime duration



- measure maximum x<sub>1</sub> amplitude of the analysis/forecast state at the time a flow reversal is (correctly) forecast
- calculate likelihood of durations (discrete) using weathermap
- $\Im$  probabilistic forecast of regime duration ==

# Duration forecast skill

| Test | RPS |
|------|-----|
| lead | 51% |
| BV   | 63% |
|      | 48% |

# Window of stability: predicting regime duration



- measure maximum x<sub>1</sub> amplitude of the analysis/forecast state at the time a flow reversal is (correctly) forecast
- calculate likelihood of durations (discrete) using weathermap
- ${f 0}$  probabilistic forecast of regime duration  $\Longrightarrow$

# Duration forecast skill

| Τe  | st | RPS |  |
|-----|----|-----|--|
| lea | ad | 51% |  |
| В   | V  | 63% |  |
| slo | ре | 48% |  |

# Wrapping up

- DA effectively couples a low-dimensional, approximate model to complex direct numerical simulations of the thermosyphon
- Empirical techniques based on physics best predict flow reversals and subsequent duration
- Preprint available at my personal website http://uvm.edu/~kharris/papers/thermosyphon-da.pdf

#### Laboratory thermosyphon



Our techniques should be applicable to thermosyphon experiments

#### Acknowledgments

This work was supported by NSF and NASA EPSCoR, the URECA program, and the Vermont Space Grant Consortium.

Thanks to El Hassan Ridouane, Floyd Vilmont, Darren Hitt, Ashley McKhann, Nick Allgaier, and Ross Lieb-Lappen.





#### 3D-Var results for 120 s assimilation window



#### 3D-Var results for 600 s assimilation window



## Early warning: more on the slope test



#### More flow reversal occurance stats

- Lead: TS= 84%, FAR=13%, HR=97%, n=160542
- BV: TS= 63%, FAR=36%, HR=97%, n=124118
- Slope: TS= 77%, FAR=7.1%, HR=82%, n=157978

|        |     | Observed |        |  |
|--------|-----|----------|--------|--|
|        |     | Yes      | No     |  |
| Feact  | Yes | 4115     | 639    |  |
| I Cast | No  | 135      | 155653 |  |

|        |     | Observed |        |  |
|--------|-----|----------|--------|--|
|        |     | Yes      | No     |  |
| Ecost  | Yes | 4131     | 2323   |  |
| I Cast | No  | 119      | 122522 |  |

|       |     | Observed |        |  |
|-------|-----|----------|--------|--|
|       |     | Yes      | No     |  |
| Ecort | Yes | 3473     | 266    |  |
| TCast | No  | 777      | 153426 |  |