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Valence scoring

Scoring a text

look from occurances of words in ANEW list,
construct frequencies fi , i = 1, . . . , 1034

create weighted average based on scores si

happiness =

∑
i si fi∑
i fi
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Valence scoring

Scores for typical ANEW words

Takeaway: ANEW sample a mixture of salient and neutral words
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Example scores for certain texts
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Geographical variation of happiness, as expressed by users of Twitter

Methodology

Valence scoring

So many possibilities!

One can examine:

trends in time

network characteristics

beyond ANEW (distributions of all words, information theory)

spatial trends ←− this talk
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Identifying the origin of tweets

Two routes:

1 self-reporting

users accounts specify a “Location”, e.g. “Burlington VT”,
“New York”, “over the rainbow!! :-)”
parse out city & state, e.g. [“burlington”, “vt”]
look up in database of places (USGS Geonames)
∼5-20% identifiable this way
store at level of county
data since Sept. 2008
we do this now

2 location encoded in tweet
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The big picture: maps
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Counties with data for > 100 unique users (’09-’10)
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Maps

All states (’09-’10)
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Wordshifts

Getting into the details: word-shift plots
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Spatial correlations with socioeconomic indices
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Socioeconomic correlations

Happiness and $$$
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Socioeconomic correlations

Happiness, information, and politics
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Conclusions, future directions

Fully investigate socioeconomic correlations

Add in time analysis (deal with non-uniform sample sizes)

Compare to detailed geocoding

Kridgings, other elegant geostatistical analysis
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Happiness trajectories of individual states
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Information trajectories of individual states
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