Geographical variation of happiness

as expressed by users of Twitter

Kameron Decker Harris

@‘ﬁﬂ.

'COMPLEX SYSTEMS CENTER

Peter S. Dodds
Isabel M. Klouman
Catherine Bliss X
Christopher M. Danforth VACC

April 26, 2011



Geographical variation of happiness, as expressed by users of Twitter

L outline

Methodology
m Valence scoring
m Geotagging

Results
m Maps
m Wordshifts
m Socioeconomic correlations

Conclusions

Kameron Decker Harris 2/21



Geographical variation of happiness, as expressed by users of Twitter
L outline

Why measure happiness?

It's important:

Kameron Decker Harris

3/21



Geographical variation of happiness, as expressed by users of Twitter
L outline

Why measure happiness?

It's important:

m Choose: gross domestic... product or happiness?

Kameron Decker Harris 3/21



Geographical variation of happiness, as expressed by users of Twitter
L outline

Why measure happiness?

It's important:

m Choose: gross domestic... product or happiness?

Kameron Decker Harris 3/21



Geographical variation of happiness, as expressed by users of Twitter
L outline

Why measure happiness?

It's important:

m Choose: gross domestic... product or happiness?

m People # rational ... feelings influence everything. To model
behavior, we must understand states of mind.

Kameron Decker Harris 3/21



Geographical variation of happiness, as expressed by users of Twitter
L outline

Why measure happiness?

It's important:

m Choose: gross domestic... product or happiness?

m People # rational ... feelings influence everything. To model
behavior, we must understand states of mind.

To this end we need an objective instrument, call it a hedonometer
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Hedonom-a-what?

‘hedonometer’ = device to measure well-being

Ideally:
m objective

m improvable
(actually GDP1) m text-based

m fast, for big data
(Twitter data set has ~ 30 x 10° words)
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ANEW = ‘Affective Norms for English Words'

1 2 3 4 5 6 7 8 9

m 1034 words with scored on three dimensions:

m valence (happiness)
m arousal
m dominance

m from Bradley and Lang (1999)
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Scoring a text

m look from occurances of words in ANEW list,
construct frequencies f;, i = 1,...,1034

m create weighted average based on scores s;

> sifi
>ifi

happiness =
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Scores for typical ANEW words

— triumphant (8.82) / paradise (8.72) / love (8.72)
luxury (7.88) / trophy (7.78) / glory (7.55)
optimism (6.95) / church (6.28) / pancakes (6.08)
street (5.22) / paper (5.20) / engine (5.20)
neurotic (4.45) / vanity (4.30) / derelict (4.28)
50 fault (3.43) / lawsuit (3.37) / corrupt (3.32)
disgusted (2.45) / hostage (2.20) / trauma (2.10)

ﬂ F funeral (1.39) / rape (1.25) / suicide (1.25)

1 2 3 4 5 o6 7 8 9
valence v

normalized frequency fANEW
S
S

Takeaway: ANEW sample a mixture of salient and neutral words
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Example scores for certain texts

[Text: [havg [Words with a similar score: |

Soul /Gospel music 6.9 |chocolate (6.88), leisurely

Lyrics [20] (6.88), penthouse (6.81)

Pop music lyrics [20] | 6.7 [dream (6.73), honey (6.73),
sugar (6.74)

Dante’s Paradise [33] | 6.5 |muffin (6.57), rabbit (6.57),
smooth (6.58)

Tweets, 9/9/2008 to | 6.4 |thought (6.39), face (6.39),

12/31/2010 (present blond (6.42)

work)

Rock music lyrics [20] | 6.3 [church (6.28), tree (6.32), air
(6.34)

Enron Emails [34] 6.2 |clouds (6.18), alert (6.20),
computer (6.24)

State of the Union 6.1 |grass (6.12), idol (6.12), bottle

Messages [20] (6.15)

New York Times 6.0 [hotel (6.00), tennis (6.02),

(1987-2007) [35] wonder (6.03)

Blogs [20] 5.8 [owl (5.80), whistle (5.81),
humble (5.86)

Dante’s Inferno [33] 5.5 |glacier (5.50), repentant
(5.53), mischief (5.57)

Metal /Industrial 5.4 [lamp (5.41), elevator (5.44),

music lyrics [20] truck (5.47)
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So many possibilities!

One can examine:
m trends in time
m network characteristics
m beyond ANEW (distributions of all words, information theory)
m spatial trends «— this talk
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data since Sept. 2008

we do this now
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I—Maps

Counties with data for > 100 unique users ('09-'10)

Happiness in US by County

7.03

6.68

6.34
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5.65

5.3
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All states ('09-'10)

Happiness in US by State

6.43

6.4

6.38

6.36

6.34

6.31
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Happiness and $$$
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Happiness, information, and politics
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Conclusions, future directions

m Fully investigate socioeconomic correlations
m Add in time analysis (deal with non-uniform sample sizes)
m Compare to detailed geocoding

m Kridgings, other elegant geostatistical analysis
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Information trajectories of individual states
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