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At first glance, the neuronal network seems like a tangled web in many areas through-

out the nervous system. Often, our best guess is that such “messy” connections are close

to random, while obeying certain statistical constraints, e.g. the number of connections

per neuron. However, neuronal wiring is coordinated across larger mesoscopic distances

in a way that differentiates between brain layers, areas, and groups of cells. We work

across spatial scales in order to understand this hierarchy of order and disorder in brain

networks. Ultimately, the goal is to understand how network structure is important for

brain function. This leads to:

1. An inference technique which reconstructs mesoscopic brain networks from tracing

experiments targeting spatially contiguous groups of neurons.

2. Models of networks which are random, while also having constrained average con-

nectivity and group structure.

3. Comparing simulated and real respiratory rhythms, highlighting the role of in-

hibitory neurons and connectivity on rhythmogenesis, in particular synchrony and

irregularity.
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NOTATION

�: entry-wise greater than or equal to, e.g. W � 0 means every entry of W is non-
negative

G(V, E): graph (directed or undirected) with vertices V and edges E

N: natural numbers 1, 2, 3, . . .

R: real numbers

R+: the non-negative real numbers

iii



ACKNOWLEDGMENTS

Thanks to everyone who helped me get through this PhD. When we feel like we are

toiling away alone, on something that can seem so specialized, it is our relationships and

the teaching we do that make science worth it.

First of all, thank you to my advisor Eric Shea-Brown for being a tireless advocate of

me and the rest of his students. You bring a consistently cheerful attitude to your work

and life. I am always impressed by your professionalism and drive to create a welcoming

and open environment in the lab.

In the Applied Mathematics department, thank you to Keshanie Dissanayake, Lauren

Lederer, Derek Franz, Alan Perry, Tony Garcia, and the rest of the staff and faculty. You

are the ones that keep everything running!

The support of the rest of the UW computational neuroscience community was es-

sential. In particular, thanks to the other members of our group (past and present): Josh

Mendoza, Iris Shi, Doris Voina, Matt Farrell, Ali Weber, Kathleen Champion, Tim Oleskiw,

Alex Cayco-Gajic, Guillaume Lajoie, Yu Hu, Braden Brinkman, Hannah Choi, Merav

Stern, Gabrielle Gutierrez, and Joel Zylberberg. I appreciate all the help I’ve received

from Adrienne Fairhall and her wonderful group of students. And the many comp neuro

happy hours were another joyful release from the frustrations of graduate school life.

Thanks to all of my collaborators as well, especially the committee members who co-

advised me on these projects. At the Allen Institute: Stefan Mihalas, Joe Knox, Nile Grad-

dis, Nick Cain, David Feng, Lydia Ng, and many others were a great help in getting me

going with their data and as the source of many great ideas.

In the Seattle Children’s Research Institute: Nino Ramirez, your group has been so

iv



welcoming, and it seems like you guys have the most fun of any lab I know! Thanks

to members Tatiana Dashevskiy (sorry for demanding so many Ns), Fred Garcia, Aguan

Wei, and everyone else.

Thank you to Ioana Dumtriu for your patience teaching me spectral graph theory from
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Chapter 1

CONNECTING NETWORK THEORY, STATISTICS,
AND PHYSIOLOGY

If you look at a piece of brain under a microscope, it will probably look like a mess.

Every neuron connects to thousands of others on average, in a way that appears random.

If we zoom out, however, hierarchical structure reveals itself. In the cortex, for exam-

ple, neurons are organized into layers and cell-types, which are furthermore organized

into different areas. I study how to measure and model these “messy” networks given

incomplete data, both from an inference standpoint and using “toy” random networks

whose parameters are easily measureable. I also examine how that structure shapes brain

dynamics, in particular synchrony and rhythms.

The brain is a fascinating system which allows us to actively engage with the world

through sensation, cognition, and action. Brains are both complicated—intricately com-

posed of many particular parts—and complex—their behavior emerges from the interac-

tions of many neurons connected in a network [Anderson, 1972]. Because of this complex-

ity, reductionism alone will not solve the brain. Instead, we need constructive theories for

how assemblies of networked neurons perform computations. These computations rely

on network structure.

Neurons are the main information processing units of the brain. They function through

rapid fluctuations of their membrane potentials called spikes. Spikes are transmitted direc-

tionally from the cell body along the axon. These potentials are generated and propagated

by the action of voltage-sensitive ion channels embedded in the membrane. Neurons

receive information via their dendrites. Axons and dendrites can be highly branched to
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Figure 1.1: An illustration of cerebellar neurons by Ramón y Cajal [1906]. Arrows indi-
cate the direction of spike transmission from dendrites to axons. Cajal inferred this correct
directionality from the geometry of the neurons alone, before detailed electrophysiolog-
ical properties of neurons were known. If all of the cerebellar neurons in this area were
pictured, we would see a jungle of overlapping axons, dendrites, and cell bodies.

communicate with many thousands of other neurons (Fig. 1.1). When a spike reaches the

axon terminals, it causes the release of neurotransmitter molecules which diffuse towards

dendrites of receiving neurons. Receptors specialized for that neurotransmitter transduce

the signal into a change in electrical potential of the receiving cell, which may elevate (ex-

cite) or depress (inhibit) the membrane potential of the downstream neuron. Neurons

which communicate this way are synaptically connected. Synapses are the most prevalent

type of connection in the brain, although there are others like gap junctions (which act

like a direct conductance between cells) and coupling through glia.

1.1 Introduction to networks and graph theory

The interconnected web of neurons in the brain forms a network. Network is another word

for a graph, a collection of vertices V and edges E between them. We also use nodes and

links to refer to vertices and edges, respectively. Network and graph have different con-
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notations, networks being more commonly used in the physics community and graphs

among mathematicians. Hackett [2011, Section 1.2.1] puts this nicely:

To model a complex system as a graph is to filter out the functional details of
each of its components, and the idiosyncrasies of their interactions with each
other, and to focus instead on the underlying structure (topology) as an inert
mathematical construct. Although this technique is central also to network
theory, the word network, in contrast, usually carries with it connotations of
the context in which the overarching system exists, particularly when that sys-
tem displays any sort of nonlinear dynamics.

In the networks we consider here, nodes usually represent neurons or collections of

neurons connected by synaptic links. However, the results may be more generally appli-

cable, and in Chapter 3 we consider abstract graphs which may represent a code, com-

munity of people, etc. These neurons and synapses have their own nonlinear dynamics

which determine how they generate and transmit spikes. A popular term for any com-

prehensive whole-brain neural network is connectome.

We now introduce some terminology from graph theory which is essential to this re-

search. For a detailed introduction, see West [2001] and Newman [2010]. It will be useful

to represent the connectivity of the graph with the adjacency matrix A, a |V| × |V| matrix.

Entry Aij = 1 if node j connects to node i, i.e. (j, i) ∈ E, and Aij = 0 otherwise. Sometimes

the edges will have weights denoting the strength of a connection, and this will then be

the weight matrix. The number of neighbors of a node is its degree.

If the edges each point one way or the other, the graph is directed. In a directed graph,

the adjacency matrix is asymmetric, in contrast to a simple graph which has A = AT. We

use in-degree and out-degree for incoming and outgoing edges in a directed graph. A graph

is called d-regular if every vertex has the same degree d.

In this work, we are generally focused on the relevance of graph theory to dynamical

systems which take place on such graphs. Because algebra is one of our most power-

ful tools for studying dynamical systems, these are the tools we bring to bear on these

networks. Many questions about dynamics on graphs, such as the stability of various so-
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Figure 1.2: A small directed graph. It contains a connected component of 5 nodes and
one isolated node. The majority of the edges are directed. There is one undirected edge,
shown without arrows. There is also a self-loop.

lutions, are really questions about the eigenvalues and eigenvectors of A and related ma-

trices. However, graph theory is a well-developed area with deep connections to many

mathematical fields such as combinatorics (extremal graphs, Ramsey theory, subgraph

enumeration), group theory (Cayley graphs, graph symmetries, algebraic constructions of

expanders), analysis (Feynman diagrams applied to perturbative expansions), and prob-

ability (random graphs). The applications of these various aspects range from computer

science, social science, ecology, systems biology and genetics, to physics.

1.2 Finding networks in the real world

Measuring networks is often difficult, especially in the messier biological sciences. If a

directed network contains N = |V| vertices, then an experimenter must test all N2 possi-

ble ordered pairs of vertices for the presence of an edge. In neuroscience, there are both

anatomical and electrophysiological techniques to measure synaptic connections between

single neurons [Sporns, 2010].

The classical electrophysiological technique is to induce spikes in one neuron and see

whether it evokes a response in another. Practically, the experimenter must first patch

onto each neuron with an electrode. A current is injected into the first neuron which

causes it to spike. If the second neuron’s membrane potential reliably increases or de-

creases following the stimulation, possibly evoking a spike, then the first neuron is presy-
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naptic to it. The change in the membrane potential, either up or down, indicates whether

the presynaptic neuron is excitatory or inhibitory, and the amount of change gives the

strength of the synapse.

The anatomical technique measures the fine-scale geometry of neurons, classifies ax-

ons and dentrites, and identifies likely connections between them at places such as synap-

tic boutons. Neuroanatomy began in the nineteenth century with the pioneering work of

Santiago Ramón y Cajal, who applied the staining method developed by Camillo Golgi,

which sparsely labels neurons. This sparse labeling is incredibly fortuitous, since other-

wise all one would see is a tangled mess. He went on to describe many features of the

nervous system of animals and humans, proposed that neurons are the building-blocks

of brain computation (the neuron hypothesis), proposed the directionality of signal trans-

mission from axons to dendrites, and produced many beautiful illustrations; see Fig. 1.1,

reproduced from Ramón y Cajal [1906]. However, staining techniques do not allow for

precise identification of synaptic connections and fail to label many neurons. Nowadays,

anatomists use three-dimensional electron microscopy (EM) to visualize the finest struc-

ture every neurons in a given volume. Image stacks are segmented, usually in a semi-

automated manner, to identify, neurons, axons, dentrites, boutons, etc. With these de-

tailed data, we can untangle the mess of neurons.

Each of these approaches can unambiguously identify the presence or absence of synap-

tic connections at the single neuron level. There have been a number of successes of paired

recordings in small circuits, such as central pattern generators in crustaceans, lampreys,

and insects [Marder and Calabrese, 1996, Marder and Bucher, 2001]. The technique has

also been used in cortical networks to identify the abundances of small motifs by per-

forming simultaneous quadruple recordings [Song et al., 2005]. One famous success of

EM reconstructions was the measurement of the first connectome, for the nematode C.

elegans [White et al., 1986]. However, EM reconstructions have been performed of small

circuits, like fly retina, along with small cortical volumes on the order of 10 µm wide

[Kleinfeld et al., 2011, Bock et al., 2011, Glickfeld et al., 2013].
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The technology to perform network characterization and reconstruction is advancing

rapidly. Electrophysiological recordings are inherently limited in the number of neurons

that a single neuron can record from due to the inevitable decline of neuron health over

time in slices. However, fully-automated cell identification and patching techniques will

speed up this process and capture more cells [Suk et al., 2017]. With increased computing

storage and power, and improved experimental techniques, the scale of EM datasets that

can be collected and processed is growing quickly.

The previous discussion concerned testing for synaptic connections in a network of

neurons, which gives a very fine-scale, detailed description: the micro-connectome. How-

ever, as the human brain contains roughly 109 neurons total, with an average degree of

104, these techniques can only take us so far. Even storing such a matrix, with 1013 en-

tries, will be difficult. This roadblock, along with the understanding that the brain is

organized into a hierarchy of systems (areas, columns, layers) built up of many neurons,

has leads us to consider networks defined at coarser scales, often called the meso- and

macro-connectomes [Sporns, 2010].

Current technology is nicely matched to measuring structural connectivity at meso-

scale resolutions on the order of 10–100 µm. Large team efforts have performed numer-

ous tracing experiments in fly [Jenett et al., 2012, Peng et al., 2014] and mouse [Oh et al.,

2014, Kuan et al., 2015], and they are planned for marmoset [Okano et al., 2015]. In these

experiments, a viral or similar tracer is delivered to a specific source site in the brain.

This tracer labels the neurons in that area, either highlighting where their axons go (an-

terograde tracing), or where the axons of neurons presynaptic to the source site neurons

come form (retrograde tracing). These experiments are repeated for many source sites

across the brain to gather data on brain-connectivity. An example of one of these experi-

ments is shown in Fig. 1.3.

If only a single tracing experiment is performed for each brain region, it is relatively

straightforward to build a region-by-region macro-connectome. For an injection delivered

precisely to source region j, we can normalize the projection density to region i by the
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Figure 1.3: Example of meso-scale connectivity data collected via viral tracing. In this
experiment, the tracer was injected in the right hemisphere. Axonal projections of neurons
whose cell bodies are within the injection site are visible as green fluorescence on both the
ipsilateral and contralateral sides. These images show just one of many coronal slices
which are stitched together into a 3-D image of fluorescence intensity. These data were
collected by the Allen Institute for Brain Science [Oh et al., 2014] and are available online
at http://connectivity.brain-map.org.

strength of injection and assign this to the weight Wij. However, for situations where

there are multiple, possibly inconsistent, injections in the source regions, a regression

method is more appropriate [Oh et al., 2014]. Chapter 2 details one method we developed

to improve connectome inference and go from a region-specific resolution to a spatially

explicit meso-connectome.

1.3 Networks built from graph statistics

Families of random networks are popular ways to model real networks where a full ad-

jacency or weight matrix is not available [Bollobás, 2001, Newman, 2010]. The simplest

model, now called the Erdős-Rényi graph, adds edges independently at random with a

fixed probability. These graphs have only two parameters, the number of vertices N and

the connection probability p. This makes them attractive for modeling networks, e.g. com-

plicated cortical circuits, where it would be impossible to test each connection but easy

http://connectivity.brain-map.org
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to characterize the average probability of a connection. Other classical random graphs

include the d-regular random graph and the random graph with |E| edges. These graphs

are now well-characterized and nearly everything one might want to know about them

has been proven.

In the late 1990s, there was an explosion of interest in graphs that could capture prop-

erties of the Internet and other technological and biological networks. These networks

often have highly skewed or power-law degree distributions. Classical random graph

models do not have this property; the Erdős-Rényi graph, for example, has degrees which

are binomially distributed. Barabási and Albert [1999] made the celebrated preferential

attachment model to describe how power-law graphs may be generated. Many of these

networks also have the small-world property, where the average distance between any

two nodes is small while also containing many triangles [Watts and Strogatz, 1998]. There

now exist a multitude of random graph models that contain interesting tunable features

like degree distributions, triangle or clique counts, and community structure. The explo-

sion of papers which cover these and other topics have led to the creation of network

science as its own discipline [Newman, 2010].

Community structure in a network refers to a partitioning of nodes into clusters with

most connections occuring within each cluster rather than between them. The simplest

random network model of community formation, the stochastic block or planted partition

model, assigns edges with probability pin within communities and pout between, where

pin > pout [Newman, 2010]. Different types of edges, perhaps reflecting neurotransmitter

or receptor types with varying dynamics, is another way to form communities. Network

communities are very likely how the various neural systems are partitioned into areas or

sub-circuits which manage different brain functions. In Chapter 4, we show how divid-

ing a single network into two communities, with predominantly inhibitory connections

between communities, can segment a rhythm into two separate phases.

In Chapter 3, we study a generalized version of the d-regular random graph which

now has two communities. The vertices V are split into two sets V1 and V2, and edges
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are only allowed between the two sets. Any graph where this is possible is called a bi-

partite graph. If the sets are unbalanced, i.e. |V1| 6= |V2|, then the degrees of vertices in

the sets must also be different. Therefore, we call our model the bipartite, biregular ran-

dom graph. Chapter 3 details various properties of the spectrum of the adjacency matrix

for this model. We mention a number of applications of our model for error correcting

codes, machine learning, and community detection. While neural networks have cer-

tainly evolved to perform similar types of representation and learning of the world, our

application is not fundamentally neuroscientific. However, the spectral properties we

study are also important for any dynamical system (including a neural one) taking place

on such a graph. For instance, they determine whether and how fast coupled oscillators

will synchronize [Arenas et al., 2008].

1.4 Biological neural network models

Neural network models began with the binary threshold units of McCulloch and Pitts

[1943], who showed that, when wired in the right network, their artificial neurons could

compute any logical function. These ideas were extended by Rosenblatt [1958] to form his

perceptron, a linear classifier with a training algorithm that formed the basis for artificial

neural networks employed to great success [e.g. Silver et al., 2016] in the machine learning

boom happening now.

Simultaneously, biophysicists began to isolate and measure ionic currents that create

the spikes and more complicated behaviors in real neurons. Hodgkin and Huxley [1952],

in their seminal series of papers, used careful voltage clamp experiments to measure the

opening and closing kinetics of voltage-dependent sodium and potassium channels in

the squid giant axon. Using these data, they created an accurate model of how these

channels interact to initiate and propagate spikes. In their careful analysis, the powers

which best fit the activation rates of each channel, amazingly, correctly predicted their

cooperative binding characteristics many decades before ion channel protein structures

were measureable. It is a testament to the power of their modeling approach that it still
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is used today, with modifications for the many other types of channels which have since

been discovered.

The basic sodium and potassium conductances are adequate to describe spike gener-

ation and tonic spiking (limit cycle) behavior. Other channels can lead to different dy-

namical behavior. For instance, slowly activating or inactivating currents are typically

present when neurons fire bursts of spikes, with a quiescent period in between. Rhyth-

mically bursting neurons are common throughout the brain [Buzsaki, 2006], especially in

pattern generating circuits [Marder and Bucher, 2001, Grillner, 2006, Grillner and Jessell,

2009, Kiehn, 2011]. The slow timescale causes a periodic cycle of termination or activa-

tion of tonic spiking. We use the mathematical techniques of singular perturbation theory,

averaging, etc. to study this type of behavior. In general, single neuron dynamics are clas-

sified in terms of the bifurcations (normal forms) neurons exhibit across their slow and

fast systems [Izhikevich, 2000].

Hodgkin-Huxley type models simplify neuronal dynamics into a set of voltage-dependent

currents coupled together with Kirchhoff’s circuit laws. In order to model network ef-

fects, one must introduce synaptic currents coming from other neurons, which depend

on both the mechanisms of neurotransmitter release, diffusion, and signal transmission

in the postsynaptic neuron [Destexhe et al., 1994]. Much of the mechanisms for learning

depend on neural activity leading to strengthening or weakening of synapses [beginning

with Hebb, 1949]. In models of learning and memory, as well as firing rate adaptation,

we must capture long- and short-term potentiation of synapses. Furthermore, the actual

morphology of axons and dendrites can lead to nonlinear processing effects, leading to

the use of spatially extended as opposed to “point” neuron models.

All of this of course ignores many other levels of complexity. Blood flow and oxygena-

tion, interactions between neurons and astrocytes, physical strain on neurons (relevant,

for example, when someone experiences a concussion), transcription’s regulation of sig-

nalling proteins, neuromodulators or drugs—all of these things affect neural dynamics.

In Chapter 4, we study a simple but biophysically realistic model of respiratory rhythm
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generation. This process depends on both the intrinsic properties of neurons which lead

to rhythmic bursts and the structure of their network, in particular the amount of inhibi-

tion and whether those inhibitory cells target their projections to specific cell groups.

1.5 The role of theoretical neuroscience

It should now be clear that there are myriad choices to make when designing a model of

any neural system. Even with complete knowledge of a synaptic network and a realistic

model for the neurons, it will be hard to predict collective neural behavior. More realis-

tic, and thus more complicated, models involve many more parameters, most of which

are unknown in the system of interest. The most important role of the theoretician is in

deciding what kind of description is best for the problem at hand.

We prefer a simple description for a more profound reason than needing a model with

fewer parameters. Simple models tell us which ingredients are essential for the effect we care

about. In paring down to the core mechanisms, we gain interpretability. Simplicity reveals

how structure gives rise to its function.

Neuroscience is presently undergoing a transition from a data-poor to a data-rich sci-

ence. Only a few years ago, recording from more than a few neurons in a circuit as very

difficult. Now, with multi-electrode arrays and calcium imaging, we can record from hun-

dreds to thousands of neurons in a freely behaving animal. The methods of data collection

are constantly changing and pushing the envelopes of detectability.

Because of this constant innovation in experimental methodology, computational sci-

entists are increasingly important for developing algorithms to denoise, sort, and ana-

lyze this data. Then, we computational neuroscientists can help bridge from the data to

an understanding of the mechanisms of neural computation. This involves comparing

the data to models of those theoretical mechanisms in action. Finally, we can propose

new mechanisms through a close understanding of the underlying mathematics of neural

computation. These theories must exist at both biophysical and more abstact levels.

This is why my research covers all of these aspects: how to measure networks with real
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data (Chapter 2), mathematical models for that network structure (Chapter 3), and how

network structure gives rise to dynamics, in particular respiratory rhythm generation

(Chapter 4). The interplay of these approaches will be part of neuroscience research for

the foreseeable future.
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Chapter 2

HIGH RESOLUTION NEURAL CONNECTIVITY FROM
INCOMPLETE TRACING DATA USING NONNEGATIVE SPLINE

REGRESSION

Kameron Decker Harris, Stefan Mihalas, Eric Shea-Brown.
In proceedings of NIPS, 2016.

Abstract

Whole-brain neural connectivity data are now available from viral tracing
experiments, which reveal the connections between a source injection site
and elsewhere in the brain. These hold the promise of revealing spatial pat-
terns of connectivity throughout the mammalian brain. To achieve this goal,
we seek to fit a weighted, nonnegative adjacency matrix among 100 µm
brain “voxels” using viral tracer data. Despite a multi-year experimental
effort, injections provide incomplete coverage, and the number of voxels in
our data is orders of magnitude larger than the number of injections, mak-
ing the problem severely underdetermined. Furthermore, projection data
are missing within the injection site because local connections there are not
separable from the injection signal.

We use a novel machine-learning algorithm to meet these challenges and
develop a spatially explicit, voxel-scale connectivity map of the mouse vi-
sual system. Our method combines three features: a matrix completion loss
for missing data, a smoothing spline penalty to regularize the problem, and
(optionally) a low rank factorization. We demonstrate the consistency of
our estimator using synthetic data and then apply it to newly available Allen
Mouse Brain Connectivity Atlas data for the visual system. Our algorithm is
significantly more predictive than current state of the art approaches which
assume regions to be homogeneous. We demonstrate the efficacy of a low
rank version on visual cortex data and discuss the possibility of extending
this to a whole-brain connectivity matrix at the voxel scale.
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2.1 Introduction

Although the study of neural connectivity is over a century old, starting with pioneering

neuroscientists who identified the importance of networks for determining brain func-

tion, most knowledge of anatomical neural network structure is limited to either detailed

description of small subsystems [White et al., 1986, Kleinfeld et al., 2011, Bock et al.,

2011, Glickfeld et al., 2013] or to averaged connectivity between larger regions [Felle-

man and Van Essen, 1991, ?]. We focus our attention on spatial, structural connectivity

at the mesoscale: a coarser scale than that of single neurons or cortical columns but finer

than whole brain regions. Thanks to the development of new tracing techniques, image

processing algorithms, and high-throughput methods, data at this resolution are now ac-

cessible in animals such as the fly [Jenett et al., 2012, Peng et al., 2014] and mouse [Oh

et al., 2014, Kuan et al., 2015]. We present a novel regression technique tailored to the

challenges of learning spatially refined mesoscale connectivity from neural tracing ex-

periments. We have designed this technique with neural data in mind and will use this

language to describe our method, but it is a general technique to assimilate spatial net-

work data or infer smooth kernels of integral equations. Obtaining a spatially-resolved

mesoscale connectome will reveal detailed features of connectivity, for example unlocking

cell-type specific connectivity and microcircuit organization throughout the brain [Jonas

and Kording, 2015].

In mesoscale anterograde tracing experiments, a tracer virus is first injected into the

brain. This infects neurons primarily at their cell bodies and dendrites and causes them

to express a fluorescent protein in their cytoplasm, including in their axons. Neurons

originating in the source injection site are then imaged to reveal their axonal projections

throughout the brain. Combining many experiments with different sources then reveals

the pathways that connect those sources throughout the brain. This requires combining

data across multiple animals, which appears justified at the mesoscale [Oh et al., 2014].

We assume there exists some underlying nonnegative, weighted adjacency matrix
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W � 0 that is common across animals. Each experiment can be thought of as an injection

x, and its projections y, so that y ≈ Wx as in Fig. 2.1A. Uncovering the unknown W from

multiple experiments (xi, yi) for i = 1, . . . , ninj is then a multivariate regression problem:

Each xi is an image of the brain which represents the strength of the signal within the

injection site. Likewise, every yi is an image of the strength of signal elsewhere, which

arises due to the axonal projections of neurons with cell bodies in the injection site. The

unknown matrix W is a linear operator which takes images of the brain (injections) and

returns images of the brain (projections).

In a previous paper, Oh et al. [2014] were able to obtain a 213 × 213 regional weight

matrix using 469 experiments with mice (Fig. 2.1B). They used nonnegative least squares

to find the unknown regional weights in an overdetermined regression problem. Our

aim is to obtain a much higher-resolution connectivity map on the scale of voxels, and

this introduces many more challenges.

First, the number of voxels in the brain is much larger than the number of injection ex-

periments we can expect to perform; for mouse with 100 µm voxels this is O(105) versus

O(103) [Oh et al., 2014, Kuan et al., 2015]. Also, the injections that are performed will in-

evitably leave gaps in their coverage of the brain. Thus specifying W is underdetermined.

Second, there is no way to separately image the injections and projections. In order to

construct them, experimenters image the brain once by serial tomography and fluores-

cence microscopy. The injection sites can be annotated by finding infected cell bodies, but

there is no way to disambiguate fluorescence from the cell bodies and dendrites from that

of local injections. Projection strength is thus unknown within the injection sites and the

neighborhood occupied by dendrites. Third, fitting full-brain voxel-wise connectivity is

challenging since the number of elements in W is the square of the number of voxels in

the brain. Thus we need compressed representations of W as well as efficient algorithms

to perform inference. The paper proceeds as follows.

In Section 2.2, we describe our assumption that the mesoscale connectivity W is smoothly-

varying in space, as could be expected from to the presence of topographic maps across
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Figure 2.1: A, We seek to fit a matrix W which reproduces neural tracing experiments.
Each column of W represents the expected signal in target voxels given an injection of one
unit into a single source voxel. B, In the work of Oh et al. [2014], a regionally homoge-
neous connectivity matrix was fit using a predefined regional parcellation to constrain the
problem. We propose that smoothness of W is a better prior. C, The mouse’s visual field
can be represented in azimuth/altitude coordinates. This representation is maintained
in the retinotopy, a smoothly varying map replicated in many visual areas (e.g. [Gar-
rett et al., 2014]). D, Assuming locations in VISp (the primary visual area) project most
strongly to positions which represent the same retinotopic coordinates in a secondary vi-
sual area, then we expect the mapping between upstream and downstream visual areas
to be smooth.

much of cortex. Later, we show that using this assumption as a prior yields connectivity

maps with improved cross-validation performance.

In Section 2.3, we present an inference algorithm designed to tackle the difficulties of

underdetermination, missing data, and size of the unknown W. To deal with the gaps

and ill-conditioning, we use smoothness as a regularization on W. We take an agnostic

approach, similar to matrix completion [Candes and Plan, 2010], to the missing projection

data and use a regression loss function that ignores residuals within the injection site.
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Finally, we present a low rank version of the estimator that will allow us to scale to large

matrices.

In Section 2.4, we test our method on synthetic data and show that it performs well for

sparse data that is consistent with the regression priors. This provides evidence that it is

a consistent estimator. We demonstrate the necessity of both the matrix completion and

smoothing terms for good reconstruction.

In Section 2.5, we then apply the spline-smoothing method to recently available Allen

Institute for Brain Science (Allen Institute) connectivity data from mouse visual cortex

[Oh et al., 2014, Kuan et al., 2015]. We find that our method is able to outperform current

spatially uniform regional models, with significantly reduced cross-validation errors. We

also find that a low rank version is able to achieve approximately 23× compression of

the original data, with the optimal solution very close to the full rank optimum. Our

method is a superior predictor to the existing regional model for visual system data, and

the success of the low rank version suggests that this approach will be able to reveal

whole-brain structural connectivity at unprecedented scale.

All of our supplemental material and data processing and optimization code is avail-

able for download from:

https://github.com/kharris/high-res-connectivity-nips-2016.

2.2 Spatial smoothness of mesoscale connectivity

The visual cortex is a collection of relatively large cortical areas in the posterior part of the

mammalian brain. Visual stimuli sensed in the retina are relayed through the thalamus

into primary visual cortex (VISp), which projects to higher visual areas. We know this

partly due to tracing projections between these areas, but also because neurons in the

early visual areas respond to visual stimuli in a localized region of the visual field called

their receptive fields [Hubel and Wiesel, 1962].

An interesting and important feature of visual cortex is the presence of topographic

https://github.com/kharris/high-res-connectivity-nips-2016


21

maps of the visual field called the retinotopy [Goodman and Shatz, 1993, Rosa and Tweedale,

2005, Wang and Burkhalter, 2007, Chaplin et al., 2013, Garrett et al., 2014]. Each eye sees

a 2-D image of the world, where two coordinates, such as azimuth and altitude, define a

point in the visual field (Fig. 2.1C). Retinotopy refers to the fact that cells are organized

in cortical space by the position of their receptive fields; nearby cells have similar recep-

tive field positions. Furthermore, these retinotopic maps reoccur in multiple visual areas,

albeit with varying orientation and magnification.

Retinotopy in other areas downstream from VISp, which do not receive many pro-

jections directly from thalamus, are likely a function of projections from VISp. It is rea-

sonable to assume that areas which code for similar visual locations are most strongly

connected. Then, because retinotopy is smoothly varying in cortical space and similar

retinotopic coordinates are the most strongly connected between visual areas, the connec-

tions between those areas should be smooth in cortical space (Fig. 2.1C and D).

Retinotopy is a specific example of topography, which extends to other sensory sys-

tems such as auditory and somatosensory cortex [Udin and Fawcett, 1988]. For this rea-

son, connectivity may be spatially smooth throughout the brain, at least at the mesoscale.

This idea can be evaluated via the methods we introduce below: if a smooth model is

more predictive of held-out data than another model, then this supports the assumption.

2.3 Nonnegative spline regression with incomplete tracing data

We consider the problem of fitting an adjacency operatorW : T× S→ R+ to data arising

from ninj injections into a source space S which projects to a target space T. Here S and T

are compact subsets of the brain, itself a compact subset of R3. In this mathematical set-

ting, S and T could be arbitrary sets, but typically S = T for the ipsilateral data we present

here.1 The source S and target T are discretized into nx and ny cubic voxels, respectively.

The discretization of W is then an adjacency matrix W ∈ R
ny×nx
+ . Mathematically, we

1Ipsilateral refers to connections within the same cerebral hemisphere. For contralateral (opposite hemi-
sphere) connectivity, S and T are disjoint subsets of the brain corresponding to the two hemispheres.
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define the tracing data as a set of pairs xi ∈ R
nx
+ and yi ∈ R

ny
+ , the source and target tracer

signals at each voxel for experiments i = 1, . . . , ninj. We would like to fit a linear model, a

matrix W such that yi ≈Wxi. We assume an observation model

yi = Wxi + ηi

with ηi
iid∼ N (0, σ2 I) multivariate Gaussian random variables with zero mean and covari-

ance matrix σ2 I ∈ Rny×ny . The true data are not entirely linear, due to saturation effects

of the fluorescence signal, but the linear model provides a tractable way of “credit assign-

ment” of individual source voxels’ contributions to the target signal [Oh et al., 2014].

Finally, we assume that the target projections are unknown within the injection site.

In other words, we only know yj outside the support of xj, which we denote supp xj,

and we wish to only evaluate error for the observable voxels. Let Ω ∈ Rny×ninj , where

the jth column Ωj = 1 − 1supp xj , the indicator of the complement of the support. We

define the orthogonal projector PΩ : Rny×ninj → Rny×ninj as PΩ(A) = A ◦Ω, the entrywise

product of A and Ω. This operator zeros elements of A which correspond to the voxels

within each experiment’s injection site. The operator PΩ is similar to what is used in

matrix completion [Candes and Plan, 2010], here in the context of regression rather than

recovery.

These assumptions lead to a loss function which is the familiar `2-loss applied to the

projected residuals:
1

σ2ninj
‖PΩ(WX−Y)‖2

F (2.1)

where Y =
[
y1, . . . , yninj

]
and X =

[
x1, . . . , xninj

]
are data matrices. Here ‖ · ‖F is the

Frobenius norm, i.e. the `2-norm of the matrix as a vector: ‖A‖F = ‖vec(A)‖2, where

vec(A) takes a matrix and converts it to a vector by stacking consecutive columns.

We next construct a regularization penalty. The matrix W represents the spatial dis-

cretization of a two-point kernelW . An important assumption forW is that it is spatially

smooth. Function space norms of the derivatives ofW , viewed as a real-valued function
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on T × S, are a natural way to measure the roughness of this function. For this study, we

chose the squared L2-norm of the Laplacian∫
T×S
|∆W|2 dydx,

which is called the thin plate spline bending energy [Wahba, 1990]. In the discrete setting,

this becomes the squared `2-norm of a discrete Laplacian applied to W:

‖L vec(W)‖2
2 =

∥∥∥LyW + WLT
x

∥∥∥2

F
. (2.2)

The operator L : Rnynx → Rnynx is the discrete Laplacian operator or second finite differ-

ence matrix on T × S. The equality in Eqn. (2.2) results from the fact that the Laplacian

on the product space T × S can be decomposed as L = Lx ⊗ Iny + Inx ⊗ Ly [Lynch et al.,

1964]. Using the well-known Kronecker product identity for linear matrix equations(
BT ⊗ A

)
vec(X) = vec(Y) ⇐⇒ AXB = Y (2.3)

gives the result in Eqn. (2.2) [Van Loan, 2000], which allows us to efficiently evaluate the

Laplacian action. As for boundary conditions, we do not want to impose any particu-

lar values at the boundary, so we choose the finite difference matrix corresponding to a

homogeneous Neumann (zero derivative) boundary condition.2

Combining the loss and penalty terms, Eqn. (2.1) and (2.2), gives a convex optimiza-

tion problem for inferring the connectivity:

W∗ = arg min
W�0
‖PΩ(WX−Y)‖2

F + λ
ninj

nx

∥∥∥LyW + WLT
x

∥∥∥2

F
. (P1)

In the final form, we absorb the noise variance σ2 into the regularization hyperparameter

λ and rescale the penalty so that it has the same dependence on the problem size nx, ny,

and ninj as the loss. We solve the optimization (P1) using the L-BFGS-B projected quasi-

Newton method, implemented in C++ [Byrd et al., 1995, Boyd and Vandenberghe, 2004].

The gradient is efficiently computed using matrix algebra.

2It is straightforward to avoid smoothing across region boundaries by imposing Neumann boundary
conditions at the boundaries; this is an option in our code available online.
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Note that (P1) is a type of nonnegative least squares problem, since we can use Eqn. (2.3)

to convert it into

w∗ = arg min
w�0
‖Aw− y‖2

2 + λ
ninj

nx
‖L w‖2

2 ,

where A = diag (vec(Ω))
(

XT ⊗ Iny

)
, y = diag (vec(Ω)) vec(Y), and w = vec(W). Fur-

thermore, without the nonnegativity constraint the estimator is linear and has an explicit

solution. However, the design matrix A will have dimension
(
nyninj

)
×
(
nynx

)
, with

O(ny
3ninj) entries if nx = O(ny). The dimensionality of the problem prevents us from

working directly in the tensor product space. And since the model is a structured matrix

regression problem [Argyriou et al., 2009], the usual representer theorems [Wahba, 1990],

which reduce the dimensionality of the estimator to effectively the number of data points,

do not immediately apply. However, we hope to elucidate the connection to reproducing

kernel Hilbert spaces in future work.

2.3.1 Low rank version

The largest object in our problem is the unknown connectivity W, since in the undercon-

strained setting ninj � nx, ny. In order to improve the scaling of our problem with the

number of voxels, we reformulate it with a compressed version of W:

(U∗, V∗) = arg min
U,V�0

‖PΩ(UVTX−Y)‖2
F + λ

ninj

nx

∥∥∥LyUVT + UVT LT
x

∥∥∥2

F
. (P2)

Here, U ∈ R
ny×r
+ and V ∈ R

nx×r
+ for some fixed rank r, so that the optimal connectivity

W∗ = U∗V∗T is given in low rank, factored form. Note that we use nonnegative factors

rather than constrain UVT � 0, since this is a nonlinear constraint.

This has the advantage of automatically computing a nonnegative matrix factorization

(NMF) of W. The NMF is of separate scientific interest, to be pursued in future work,

since it decomposes the connectivity into a relatively small number of projection patterns,

which has interpretations as a clustering of the connectivity itself.

In going from the full rank problem (P1) to the low rank version (P2), we lose convex-

ity. So the usual optimization methods are not guaranteed to find a global optimimum,
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and the clustering just mentioned is not unique. However, we have also reduced the size

of the unknowns to the potentially much smaller matrices U and V, if r � ny, nx. If

nx = O(ny), we have only O(nyr) unknowns instead of O(ny
2). Evaluating the penalty

term still requires computation of nynx terms, but this can be performed without storing

them in memory.

We use a simple projected gradient method with Nesterov acceleration in Matlab to

find a local optimum for (P2) [Boyd and Vandenberghe, 2004], and will present and com-

pare these results to the solution of (P1) below. As before, computing the gradients is

efficient using matrix algebra. This method has been used before for NMF [Lin, 2007].

2.4 Test problem

We next apply our algorithms to a test problem consisting of a one-dimensional “brain,”

where the source and target space S = T = [0, 1]. The true connectivity kernel corre-

sponds to a Gaussian profile about the diagonal plus a bump:

Wtrue(x, y) = exp

{
−
(

x− y
0.4

)2
}
+ 0.9 exp

{
− (x− 0.8)2 + (y− 0.1)2

(0.2)2

}
.

See the left panel of Fig. 2.2. The input and output spaces were discretized using nx =

ny = 200 points. Injections are delivered at random locations within S, with a width of

0.12+ 0.1ε where ε ∼ Uniform(0, 1). The values of x are set to 1 within the injection region

and 0 elsewhere, y is set to 0 within the injection region, and we take noise level σ = 0.1.

The matrices Lx = Ly are the 5-point finite difference Laplacians for the rectangular lattice.

Example output of (P1) and (P2) is given for 5 injections in Fig. 2.2. Unless stated oth-

erwise, λ = 100. The injections, depicted as black bars in the bottom of each sub-figure,

do not cover the whole space S but do provide good coverage of the bump, otherwise

there is no information about that feature. We depict the result of the full rank algorithm

(P1) without the matrix completion term PΩ, the result including PΩ but without smooth-

ing (λ = 0), and the result of (P2) with rank r = 20. The full rank solution is not shown,

but is similar to the low rank one.
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Figure 2.2: Comparison of the true (Above left) and inferred connectivity from 5 injec-
tions. Unless noted, λ = 100. Above right, we show the what happens when we solve
(P1) without the matrix completion term PΩ. The holes in the projection data cause patchy
and incorrect output. Note the colorbar range is 6× that in the other cases. Below left is
the result with PΩ but without regularization, solving (P1) for λ = 0. There, the solution
does not interpolate between injections. Below right is a rank r = 20 result using (P2),
which captures the diagonal band and off-diagonal bump that make up Wtrue. In this
case, the low rank result has less relative error (9.6%) than the full rank result (11.1%, not
shown).
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Figure 2.2 shows the necessity of each term within the algorithm. Leaving out the ma-

trix completion PΩ leads to dramatically biased output since the algorithm uses incorrect

values ysupp(x) = 0. If we include PΩ but neglect the smoothing term by setting λ = 0,

we also get incorrect output: without smoothing, the algorithm cannot fill in the injection

site holes nor can it interpolate between injections. However, the low rank result accu-

rately approximates the true connectivity Wtrue, including the diagonal profile and bump,

achieving 9.6% relative error measured as ‖W∗−Wtrue‖F/‖Wtrue‖F. The full rank version

is similar, but in fact has slightly higher 11.1% relative error.

2.5 Finding a voxel-scale connectivity map for mouse cortex

We next apply our method to the latest data from the Allen Institute Mouse Brain Con-

nectivity Atlas, obtained with the API at http://connectivity.brain-map.org. Briefly,

in each experiment mice were injected with adeno-associated virus expressing a fluores-

cent protein. The virus infects neurons in the injection site, causing them to produce the

protein, which is transported throughout the axonal and dendritic processes. The mouse

brains for each experiment were then sliced, imaged, and aligned onto the common co-

ordinates in the Allen Reference Atlas version 3 [Oh et al., 2014, Kuan et al., 2015]. These

coordinates divide the brain volume into 100 µm× 100 µm× 100 µm voxels, with approx-

imately 5× 105 voxels in the whole brain. The fluorescent pixels in each aligned image

were segmented from the background, and we use the fraction of segmented versus total

pixels in a voxel to build the vectors x and y. Since cortical dendrites project locally, the

signal outside the injection site is mostly axonal, and so the method reveals anterograde

axonal projections from the injection site.

From this dataset, we selected 28 experiments which have 95% of their injection vol-

umes contained within the visual cortex (atlas regions VISal, VISam, VISl, VISp, VISpl,

VISpm, VISli, VISpor, VISrl, and VISa) and injection volume less than 0.7 mm3. For

this study, we present only the results for ipsilateral connectivity, where S = T and

nx = ny = 7497. To compute the smoothing penalty, we used the 7-point finite-difference

http://connectivity.brain-map.org
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Model Voxel MSErel Regional MSErel

Regional 107% (70%) 48% (6.8%)

Voxel 33% (10%) 16% (2.3%)

Table 2.1: Model performance on Allen Institute Mouse Brain Connectivity Atlas data.
Cross-validation errors of the voxel model (P1) and regionally homogeneous models are
shown, with training errors in parentheses. The errors are computed in both voxel space
and regional space, using the relative mean squared error MSErel, Eqn. (2.4). In either
space, the voxel model shows reduced training and cross-validation errors relative to the
regional model.

Laplacian on the cubic voxel lattice.

In order to evaluate the performance of the estimator, we employ nested cross-validation

with 5 inner and outer folds. The full rank estimator (P1) was fit for λ = 103, 104, . . . , 1012

on the training data. Using the validation data, we then selected the λopt that minimized

the mean square error relative to the average squared norm of the prediction WX and

truth Y, evaluating errors outside the injection sites:

MSErel =
2‖PΩ(WX−Y)‖2

F
‖PΩ(WX)‖2

F + ‖PΩ(Y)‖2
F

. (2.4)

This choice of normalization prevents experiments with small ‖Y‖ from dominating the

error. This error metric as well as the `2-loss adopted in Eqn. (P1) both more heavily

weight the experiments with larger signal. After selection of λopt, the model was refit

to the combined training and validation data. In our dataset, λopt = 105 was selected

for all outer folds. The final errors were computed with the test datasets in each outer

fold. For comparison, we also fit a regional model within the cross-validation framework,

using nonnegative least squares. To do this, similar to the study by Oh et al. [2014], we

constrained the connectivity Wkl = WRiRj to be constant for all voxels k in region Ri and l

in region Rj.

The results are shown in Table 2.1. Errors were computed according to both voxels

and regions. For the latter, we integrated the residual over voxels within the regions be-
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fore computing the error. The voxel model is more predictive of held-out data than the

regional model, reducing the voxel and regional MSErel by 69% and 67%, respectively.

The regional model is designed for inter-region connectivity. To allow an easier com-

parison with the voxel model, we here include within region connections. We find that

the regional model is a poor predictor of voxel scale projections, with over 100% relative

voxel error, but it performs okay at the regional scale. The training errors, which reflect

goodness of fit, were also reduced significantly with the voxel model. We conclude that

the more flexible voxel model is a better estimator for these Allen Institute data, since it

improves both the fits to training data as well as cross-validation skill.

The inferred visual connectivity also exhibits a number of features that we expect.

There are strong local projections (similar to the diagonal in the test problem, Fig. 2.2)

along with spatially organized projections to higher visual areas. See Fig. 2.3, which

shows example projections from source voxels within VISp. These are just two of 7497

voxels in the full matrix, and we depict only a 2-D projection of 3-D images. The connec-

tivity exhibits strong local projections, which must be filled in by the smoothing since

within the injection sites the projection data are unknown; it is surprising how well

the algorithm does at capturing short-range connectivity that is translationally invari-

ant. There are also long-range bumps in the higher visual areas, medial and lateral,

which move with the source voxel. This is a result of retinotopic maps between VISp and

downstream areas. The supplementary material presents a view of this high-dimensional

matrix in movie form, allowing one to see the varying projections as the seed voxel

moves. We encourage the reader to view the supplemental movies, where movement of bumps

in downstream regions hints at the underlying retinotopy: https://github.com/kharris/

high-res-connectivity-nips-2016.

https://github.com/kharris/high-res-connectivity-nips-2016
https://github.com/kharris/high-res-connectivity-nips-2016
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Figure 2.3: Inferred connectivity using all 28 selected injections from visual system data.
Above left, Projections from a source voxel (blue) located in VISp to all other voxels in
the visual areas. The view is integrated over the superior-inferior axis. The connectiv-
ity shows strong local connections and weaker connections to higher areas, in particu-
lar VISam, VISal, and VISl. Movies of the inferred connectivity (full, low rank, and the
low rank residual) for varying source voxel are available in the supplementary material.
Above right, For a source 800 µm away, the pattern of anterograde projections is simi-
lar, but the distal projection centers are shifted, as expected from retinotopy. Below, The
residuals between the full rank and rank 160 result from solving (P2), for the same source
voxel as in the center. The residuals are an order of magnitude less than typical features
of the connectivity.
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2.5.1 Low rank inference successfully approximates full rank solution for visual system

We next use these visual system data, for which the full rank solution was computed, to

test whether the low rank approximation can be applied. This is an important stepping

stone to an eventual inference of spatial connectivity for the full brain.

First, we note that the singular value spectrum of the fitted W∗full (now using all 28

injections and λ = 105) is heavily skewed: 95% of the energy can be captured with 21

of 7497 components, and 99% with 67 components. However, this does not directly im-

ply that a nonnegative factorization will perform as well. To test this, we fit a low rank

decomposition directly to all 28 visual injection data using (P2) with rank r = 160 and

λ = 105. The output of the optimization procedure yields U∗ and V∗, and we find that

the low rank output is very similar to the full result W∗full fit to the same data (see also

Fig. 2.3, which visualizes the residuals):

‖U∗V∗T −W∗full‖F

‖W∗full‖F
= 13%.

This close approximation is despite the fact that the low rank solution achieves a roughly

23× compression of the 7497× 7497 matrix.

Assuming similar compressibility for the whole brain, where the number of voxels is

5× 105, would mean a rank of approximately 104. This is still a problem in O(109) un-

knowns, but these bring the memory requirements of storing one matrix iterate in double

precision from approximately 1.9 TB to 75 GB, which is within reach of commonly avail-

able large memory machines.

2.6 Conclusions

We have developed and implemented a new inference algorithm that uses modern ma-

chine learning ideas—matrix completion loss, a smoothing penalty, and low rank factorization—

to assimilate sparse connectivity data into complete, spatially explicit connectivity maps.

We have shown that this method can be applied to the latest Allen Institute data from



32

multiple visual cortical areas, and that it significantly improves cross-validated predic-

tions over the current state of the art and unveils spatial patterning of connectivity. Fi-

nally, we show that a low rank version of the algorithm produces very similar results on

these data while compressing the connectivity map, potentially opening the door to the

inference of whole brain connectivity from viral tracer data at the voxel scale.
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INTERLUDE

In the previous Chapter, we introduced a statistical method of to infer the weight

matrix of a mesoscopic network. It is essentially a data analysis method, important when

the data are incomplete and possibly inconsistent. However, such a spatial regression is

inherently dependent on having a number of experiments from which to stitch together

the weight matrix. When attempting to model neural dynamics at the microscopic level,

the network of synaptic connections is rarely recoverable to anatomists. Sometimes, the

best guess is that network of neural connections is random but consistent with certain

measureable statistics.

Since the methods of Chapter 2 can yield the mesoscopic connectivity, those weights

can be thought of as priors for the connection probability in microscopic random graph

model of neural connections. For examples, if W is an M×M matrix of voxel weights, we

could model the microscopic network as M different communities, where the probability

of connection between a node in community j and another in community i is a function

of Wij. On the other hand, if we zoom out from the micro to macro, the mesoscopic

connectivity arises as a spatially-averaged limit of the microscopic connectivity. Zooming

in or out on the network, one obtains different effective models at different scales.

In the next Chapter, we present a theoretical study of a type of two-community ran-

dom graph. This is a simple random graph model with two subsets of vertices who exhibit

different connection patterns. We study this as an interesting model in its own right, and

find a number of applications in machine learning and computer science.
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Chapter 3

RANDOM GRAPH MODELS OF COMMUNITIES:
SPECTRAL GAP AND ITS APPLICATIONS

Gerandy Brito, Ioana Dumitriu, Kameron Decker Harris

3.1 Introduction

Random regular graphs, where each vertex has the same degree d, are the best well-

known examples of expanders: graphs with high connectivity and which exhibit rapid

mixing. Expanders are of particular interest in computer science, from sampling and

complexity theory to design of error-correcting codes. For an extensive review of their

applications, see Hoory et al. [2006]. What makes random regular graphs particularly

interesting expanders is the fact that they exhibit all three existing types of expansion

properties: edge, vertex, and spectral.

The study of regular random graphs took off with the work of Bender [1974], Ben-

der and Canfield [1978], Bollobás [1980], and slightly later McKay [1984] and Wormald

[1981]. Most often, their expanding properties are described in terms of the existence of

the spectral gap, which we define below.

Let A be the adjacency matrix of a simple graph, where Aij = 1 if i and j are con-

nected and zero otherwise. Denote σ(A) = {λ1 ≥ λ2 ≥ . . .} as its spectrum. For

a random d-regular graph, λ1 = maxi |λi| = d, but the “second largest eigenvalue”

η = max(|λ2|, |λn|) is asymptoticly almost surely of much smaller order, leading to a

“spectral gap.”

The study of the second largest eigenvalue in regular graphs had a first breakthrough
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in the Alon-Boppana bound [Alon, 1986], which states that the second largest eigenvalue

η ≥ 2
√

d− 1− cd
log n

.

Graphs for which the Alon-Boppana bound is attained are called Ramanujan. Friedman

[2003] proved the conjecture of Alon [1986] that almost all d-regular graphs have η ≤

2
√

d− 1 + ε for any ε > 0 with high probability as the number of vertices goes to infinity.

Recently, Bordenave et al. [2015] improved that to η ≤ 2
√

d− 1+ εn for a sequence εn → 0

as n, the number of vertices, tends to infinity.

In this paper we prove the analog of Friedman and Bordenave’s result for bipartite,

biregular random graphs. These are graphs for which the vertex set partitions into two

independent sets V1 and V2, such that all edges occur between the sets. In addition, all

vertices in set Vi have the same degree di.

Let G(n, m, d1, d2) be the uniform distribution of simple, bipartite, biregular random

graphs. Any G ∼ G(n, m, d1, d2) is sampled uniformly from the set of simple bipartite

graphs with vertex set V = V1
⋃

V2, with |V1| = n, |V2| = m and where every vertex in Vi

has degree di. Note that we must have nd1 = md2 = |E|. Without any loss of generality,

we will assume n ≤ m when necessary. Sometimes we will write that G is a (d1, d2)-

regular graph, when we want to explicitly state the degrees. Let X be the n× m matrix

with entries Xij = 1 if and only if there is an edge between vertices i ∈ V1 and j ∈ V2.

Using the block form of the adjacency matrix

A =

 0 X

X∗ 0

 ,

it is not hard to show that all eigenvalues of A occur in pairs λ and −λ, where |λ| is a

singular value of X, along with at least |n − m| zero eigenvalues. For this reason, the

second largest eigenvalue is λ2(A) = −λn+m−1. Furthermore, just as it was the case with

d-regular graphs, the leading (Perron) eigenvalue of A is always
√

d1d2, matched to the

left by −
√

d1d2.
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Figure 3.1: The structure of every bipartite, biregular graph. There are n = |V1| left
vertices, m = |V2| right vertices, each of degree d1 and d2, with the constraint that nd1 =
md2. The distribution G(n, m, d1, d2) is taken uniformly over all such graphs.

Previous work on bipartite, biregular graphs includes the work of Feng and Li [1996]

and Li and Solé [1996], who proved the analog of Alon-Boppana bound. For every ε > 0,

λ2 ≥
√

d1 − 1 +
√

d2 − 1− ε

as the number of vertices goes to infinity. This bound also follows immediately from the

fact that the second largest eigenvalue cannot be asymptoticly smaller than the right limit

of the asymptotic support for the eigenvalue distribution, which is
√

d1 − 1 +
√

d2 − 1

and was first computed by Godsil and Mohar [1988].

Marcus et al. [2013b] showed that there exist infinite families of (d1, d2)-regular bipar-

tite graphs with λ2 =
√

d1 − 1+
√

d2 − 1 by taking repeated lifts of the complete bipartite

graph on d1 left and d2 right vertices. We note that such graphs are also called Ramanu-

jan. Complete graphs are always Ramanujan but not sparse, whereas d-regular or bipar-

tite (d1, d2)-regular graphs are sparse. Our results show that almost every (d1, d2)-regular
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graph is “almost” Ramanujan.

Beyond the first two eigenvalues, we should mention that Bordenave and Lelarge

[2010] studied the limiting spectral distribution of large sparse graphs. They obtained

a set of two coupled equations that can be solved for the eigenvalue distribution of any

(d1, d2)-regular random graph. [Dumitriu and Johnson, 2016] showed that as d1, d2 → ∞

with d1/d2 fixed, the limiting spectral distribution converges to a transformed version

of the Marčenko-Pastur law. When d1 = d2 = d, this is equal to the Kesten-McKay

distribution [McKay, 1981a], which becomes the semicircular law as d → ∞ [Godsil and

Mohar, 1988, Dumitriu and Johnson, 2016]. Notably, Mizuno and Sato [2003] obtained the

same results when they calculated the asymptotic distribution of eigenvalues for bipar-

tite, biregular graphs of high girth. However, their results are not applicable to random

bipartite biregular graphs as these asymptotically almost surely have low girth [Dumitriu

and Johnson, 2016].

Our techniques borrow heavily from the results of Bordenave [2015], who simplified

the trace method of Friedman [2003] by counting non-backtracking walks built up of seg-

ments with at most one cycle. See also the related work of Bordenave et al. [2015]. The

combinatorial methods we use to bound the number of such walks are similar to how

Brito et al. [2015] counted self-avoiding walks in the context of community recovery in a

regular stochastic block model.

Briefly, we now lay out the method of proof that the bipartite, biregular random graph

is Ramanujan. The proof outline is given in detail in Section 3.5.1, after some important

preliminary terms and definitions given in Section 3.4. The bulk of our work builds to

Theorem 3, which is actually a bound on the second eigenvalue of the non-backtracking

matrix B, as explained in Section 3.2. The Ramanujan bound on the second eigenvalue of

A then follows as Corollary 4.

To find the second eigenvalue of B, we subtract from it a matrix S that is formed from

the leading eigenvectors, and examine the spectral norm of the “almost-centered” matrix

B̄ = B− S. We then proceed to use the trace method to bound the spectral norm of the
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matrix B̄` by its trace. However, since B̄ is not positive definite, this leads us to consider

E
(
‖B̄`‖2k

)
≤ E

(
Tr
(
(B̄`)(B̄`)∗

)k
)

.

On the right hand side, the terms in B̄` refer to circuits built up of 2k segments, each of

length `+ 1 (an entry Be f is a walk on two edges). Because the degrees are bounded, it

turns out that, for ` = O(log(n)), the depth ` neighborhoods of every vertex contain at

most one cycle—they are “tangle-free.” Thus, we can bound the trace by computing the

expectation of the circuits that contribute, along with an upper bound on their multiplic-

ity, taking each segment to be `-tangle-free.

Finally, to demonstrate the usefulness of the spectral gap, we highlight three applica-

tions of our bound. In Section 3.6, we show a community detection application. Finding

communities in networks is important for the areas of social network, bioinformatics, neu-

roscience, among others. Random graphs offer tractable models to study when detection

and recovery are possible.

We show here how our results lead to community detection in regular stochastic block

models with arbitrary numbers of groups, using a very general theorem by Marina Meila

(personal communication). Previously, Newman and Martin [2014] studied the spectral

density of such models, and the community detection problem of the special case of two

groups was previously studied by Brito et al. [2015] and Barucca [2017].

In Section 3.7, we examine the application to linear error correcting codes built from

sparse expander graphs. This concept was first introduced by Gallager [1962] who ex-

plicitly used random bipartite biregular graphs. These “low density parity check” codes

enjoyed a renaissance in the 1990s, when people realized they were well-suited to modern

computers [for an overview, see Richardson and Urbanke, 2003, 2008]. Our result yields

an explicit lower bound on the minimum distance of such codes, i.e. the number of errors

that can be corrected.

The final application, in Section 3.8, leads to generalized error bounds for matrix com-

pletion. Matrix completion is the problem of reconstructing a matrix from observations of
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a subset of entries. Heiman et al. [2014] gave an algorithm for reconstruction of a square

matrix with low complexity as measured by a norm γ2, which is similar to the trace norm

(sum of the singular values, also called the nuclear norm or Ky Fan n-norm). The en-

tries which are observed are at the nonzero entries of the adjacency matrix of a bipartite,

biregular graph. The error of the reconstruction is bounded above by a factor which is

proportional to the ratio of the leading two eigenvalues, so that a graph with larger spec-

tral gap has a smaller generalization error. We extend their results to rectangular graphs,

along the way strengthening them by a constant factor of two. The main result of the

paper gives an explicit bound in terms of d1 and d2.

3.2 Non-backtracking matrix B

Given G ∼ G(n, m, d1, d2), we define the non-backtracking operator B. This operator is a

linear endomorphism of R|
~E|, where ~E is the set of oriented edges of G and |~E| = 2|E|.

Throughout this paper, we will use V(H), E(H), and ~E(H) to denote the vertices, edges,

and oriented or directed edges of a graph, subgraph, or path H. For oriented edges e =

(u, v) (here u and v are the starting and ending vertices of e) and f = (s, t), define:

Be f =

1, if v = s and u 6= t;

0, otherwise.

We order the elements of ~E as {e1, e2, · · · , e2|E|}, so that the first |E| have end point in the

set V2. In this way, we can write

B =

 0 M

N 0

 .

for |E| × |E|matrices M, N with entries equal to 0 or 1.

We are interested in the spectrum of B. Denote by 1α the vector with first |E| coordi-

nates equal to 1 and the last |E| equal to α =
√

d1 − 1/
√

d2 − 1. We can check that

B1α = B∗1α = λ1α
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for λ =
√
(d1 − 1)(d2 − 1). By the Perron-Frobenius Theorem, we conclude that λ1 = λ

and the associated eigenspace has dimension one. Also, one can check that if λ is an

eigenvalue of B with eigenvector v = (v1, v2), vi ∈ R|E| then −λ is also an eigenvalue

with eigenvector v′ = (−v1, v2). Thus, σ(B) = −σ(B) and λ2|E| = −λ1.

3.2.1 Connecting the spectra of A and B

Understanding the spectrum of B turns out to be a challenging question. A useful result

in this direction is the following theorem proved by Bass [1992] and Kotani and Sunada

[2000]; see also Theorem 3.3 in Angel et al. [2015].

Theorem 1 (Ihara-Bass formula). Let G = (V, E) be any finite graph and B be its non-

backtracking matrix. Then

det(B− λI) = (λ2 − 1)|E|−|V|det(D− λA + λ2 I),

where D is the diagonal matrix with Dvv = dv − 1 and A is the adjacency matrix of G.

From the theorem above we get the following relation between σ(A) and σ(B)

σ(B) = {±1}
⋃
{λ : D− λA + λ2 I is not invertible}.

We use the special structure of G to get a more precise description of σ(B). The matrices

A and D are equal to:

A =

 0 X

X∗ 0

 , D =

 (d1 − 1)In 0

0 (d2 − 1)Im

 ,

where Ik is the k× k identity matrix. Let λ ∈ σ(B)\{−1, 0, 1}. Then there exists a nonzero

vector v such that

(D− λA + λ2 I)v = 0.

Writing v = (v1, v2) with v1 ∈ Rn, v2 ∈ Rm, we obtain:

Xv2 =
d1 − 1 + λ2

λ
v1, X∗v1 =

d2 − 1 + λ2

λ
v2
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which imply that

η2 =
(d1 − 1 + λ2)(d2 − 1 + λ2)

λ2

is a non zero eigenvalue of both XX∗ and X∗X. The above relation gives us the following

claim, which relates the spectrum of B and the spectrum of X∗X:

Claim 2. Any λ ∈ σ(B)\{−1, 0, 1} satisfies:

λ4 − (η2 − d1 − d2 + 2)λ2 + (d1 − 1)(d2 − 1) = 0

where η2 is an nonzero eigenvalue of X∗X or, equivalently, −η and η are eigenvalues of A.

3.3 Main result

We spend the bulk of this paper in the proof of the following:

Theorem 3. If B is the non-backtracking matrix of a bipartite, biregular random graph G ∼

G(n, m, d1, d2), then its second largest eigenvalue

λ2(B) ≤ ((d1 − 1)(d2 − 1))1/4 + εn

asymptoticly almost surely, with εn → 0 as n→ ∞.

Corollary 4 (Spectral gap). If A is the adjacency matrix of a bipartite, biregular random graph

G ∼ G(n, m, d1, d2), then its second largest eigenvalue

λ2(A) ≤
√

d1 − 1 +
√

d2 − 1 + εn

asymptotically almost surely, with εn → 0 as n→ ∞.

Proof. From Claim 2 we obtain that

0 = λ4 + (d1 − 1)(d2 − 1)− (η2 − d1 − d2 + 2)λ2 .

From Theorem 3, we have that

0 ≤ 2(d1 − 1)(d2 − 1)− (η2 − d1 − d2 + 2)(d1 − 1)1/2(d2 − 1)1/2 + ε.
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Dividing through by (d1 − 1)1/2(d2 − 1)1/2 and moving η2 to the left hand side, we get

that

η2 ≤ (d1 − 1) + (d2 − 1) + 2(d1 − 1)1/2(d2 − 1)1/2 + ε = (
√

d1 − 1 +
√

d2 − 1)2 + ε,

and the result follows.

3.4 Preliminaries

We describe the standard configuration model for constructing such graphs. We then

define the “tangle-free” property of random graphs. Since almost all small enough neigh-

borhoods are tangle-free, we only need to count tangle-free paths when we eventually

employ the trace method.

3.4.1 The configuration model

The configuration or permutation model is a practical procedure to sample random graphs

with a given degree distribution. Let us recall its definition for bipartite biregular graphs.

Let V1 = {v1, v2, . . . , vn} and V2 = {w1, w2, . . . , wm} be the vertices of the graph. We

define the set of half edges out of V1 to be the collection of ordered pairs

E1 = {(vi, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ d1}

and analogously the set of half edges out of V2:

E2 = {(wi, j) for 1 ≤ i ≤ m and 1 ≤ j ≤ d2},

see Figure 3.1. Note that |E1| = |E2| = nd1 = md2. To sample a graph, we choose a

random permutation π of [nd1]. We put an edge between vi and wj whenever

π((i− 1)d1 + s) = (j− 1)d2 + t

for any pair of values 1 ≤ s ≤ d1, 1 ≤ t ≤ d2. The graph obtained may not be simple, since

multiple half edges may be matched between any pair of vertices. However, conditioning
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on a simple graph outcome, the distribution is uniform in the set of all simple bipartite

biregular graphs. Furthermore, for fixed d1, d2 and n, m → ∞, the probability of getting a

simple graph is bounded away from zero [Bollobás, 2001].

It is often useful to sample the edges one at the time. We call this the exploration process.

More precisely, we order the set E1 lexicographically: (vi, j) < (vi′ , j′) if i ≤ i′ and j ≤ j′.

The exploration process reveals π by doing the following:

• A uniform element is chosen from E2 and it is declared equal to π(1).

• A second element is chosen uniformly, now from the set E2\{π(1)} and set equal to

π(2).

• Once we have determined π(i) for i ≤ k, we set π(k + 1) equal to a uniform element

sampled from the set E2\{π(1), π(2), . . . , π(k)}.

We use the final π to output a graph as we did in the configuration model. The law of

these graphs is the same. With the exploration process, we expose first the neighbors of

v1, then the neighbors of v2, etc. This feature will be quite useful in the next subsection.

3.4.2 Tangle-free paths

Sparse random graphs have the important property of being “tree-like” in the neighbor-

hood of a typical vertex. This is the case, also, for bipartite biregular graphs. Formally,

consider a vertex v ∈ V1 ∪ V2. For a natural number `, we define the ball of radius `

centered at v to be:

B`(v) = {w ∈ V1 ∪V2 : dG(v, w) ≤ `}

where dG(·, ·) denotes the graph distance.

Definition 1. A graph G is `-tangle-free if, for any vertex v, the ball B`(v) contains at most one

cycle.
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The next lemma says that most bipartite biregular graphs are `-tangle-free up to loga-

rithmic sized neighborhoods.

Lemma 5. Fix a constant c < 1/8 and let ` = c logd(n). Let G ∼ G(n, m, d1, d2) be a bipartite,

biregular random graph. Then G is `-tangle-free with probability at least 1− n−1/2.

Proof. This is essentially the proof given in Lubetzky and Sly [2010], Lemma 2.1. Fix a

vertex v. We will use the exploration process to discover the ball B`(v). To do so, we first

explore the neighbors of v, then the neighbors of these vertices, and so on. This breadth-

first search reveals all vertices in Bk(v) before any vertices in Bj>k(v). Note that, although

our bound is for the family G(n, m, d1, d2), the neighborhood sizes are bounded above by

those of the d-regular graph with d = max(d1, d2).

Consider the matching of half edges attached to vertices in the ball Bi(v) at depth i

(thus revealing vertices at depth i + 1). In this process, we match a maximum mi ≤ di+1

pairs of half edges total. Let Fi,k be the filtration generated by matching up to the kth half

edge in Bi(v), for 1 ≤ k ≤ mi. Denote by Ai,k the event that the kth matching creates a

cycle at the current depth. For this to happen, the matched vertex must have appeared

among the k− 1 vertices already revealed at depth i + 1. The number of unmatched half

edges is at least nd− 2di+1. We then have that:

P(Ai,k) ≤
(k− 1)(d− 1)

nd− 2di+1 ≤ (d− 1)mi

(1− 2di+1n−1)nd
≤ mi

n
.

So, we can stochastically dominate the sum

`−1

∑
i=1

mi

∑
k=1

Ai,k

by Z ∼ Bin
(
d`+1, n−1d`

)
. So the probability that B`(v) is `-tangle-free has the bound:

P(B`(v) is not `-tangle-free) = P

(
`−1

∑
i=1

mi

∑
k=1

Ai,k > 1

)
≤ P(Z > 1) = O

(
d4`+1

n2

)
= O

(
n−3/2

)
,

which follows using that ` = c logd n with c < 1/8. The Lemma follows by taking a union

bound over all vertices.
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3.5 Proof of Theorem 3

3.5.1 Outline

We are now prepared to explain the main result. To study the second largest eigenvalue

of the non-backtracking matrix, we examine the spectral radius of the matrix obtained by

subtracting off the dominant eigenspace. We use Lemma 3 in Bordenave [2015] for this:

Lemma 6. Let T, R be matrices such that Im(T) ⊂ Ker(R), Im(T∗) ⊂ Ker(R). Then all

eigenvalues λ of T + R that are not eigenvalues of T satisfy:

|λ| ≤ max
x∈Ker(T)

‖(T + R)x‖
‖x‖ .

In the above theorem and throughout the text, ‖ · ‖ is the spectral norm for matri-

ces and `2-norm for vectors. Recall that the leading eigenvalues of B, in magnitude, are

λ1 =
√
(d1 − 1)(d2 − 1) and λ2|E| = −λ1 with corresponding eigenvectors 1 and 1−α.

Applying the lemma above with T = λ`
1S and R = B` − T, we get that

λ2(B) ≤ max
x ∈ Ker(T)

‖x‖ = 1

(
‖B`x‖

)1/`
, (3.1)

where S = 1α1∗α − 1−α1∗−α. It will be important later to have a more precise description of

the set Ker(T). It is not hard to check that

Ker(T) = {x : 〈x, 1α〉 = 〈x, 1−α〉 = 0}

= {(v, w) ∈ R2|E| : 〈v, 1〉 = 〈w, 1〉 = 0}.

Above, the vectors v, w and 1 are |E|−dimensional, and 1 is the vector of all ones.

In order to use Eqn. 3.1, we must bound ‖B`x‖ for large powers ` and x ∈ Ker(T).

This amounts to counting certain non-backtracking walks. We will use the tangle free

property in order to only count `-tangle-free walks. We break up B` into two parts in

Section 3.5.2, an “almost” centered matrix B̄` and the residual ∑j R`,j, and we bound each

term independently.
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To compute these bounds, we need to count the contributions of many different non-

backtracking walks. We will use the trace technique, so only circuits which return to the

starting vertex will contribute. In Section 3.5.3, we apply a useful result from McKay

[1981b] to compute the probability, during the exploration process, of revealing a new

edge e given that we have already observed a certain subgraph H. In particular, we find

different probabilities depending on whether e shares one of more endpoints in H. We

use this to bound the expectation of the of the product of entries B̄e f along segments e f of

a non-backtracking walk. A similar argument appears later, in the proof of Theorem 15,

for products of R`,j
e f .

In Section 3.5.4 we cover the combinatorial component of the proof. The total contri-

butions ‖B`x‖ come from many non-backtracking circuits of different flavors, depending

on their number of vertices, edges, cycles, etc. Each circuit is broken up into 2k segments

of tangle-free walks of length `. We need to compute not only the expectation along the

circuit, but also upper-bound the number of circuits of each flavor. we introduce an injec-

tive encoding of such circuits that depends on the number of vertices, length of the circuit,

and, crucially, the tree excess of the circuit.

Finally, in Section 3.5.5 we put all of these ingredients together and use Markov’s in-

equality to bound each matrix norm with high probability. We find that ‖B̄`‖ contributes

a factor that goes as ((d1− 1)(d2− 1))`/4, whereas ‖R`,j‖ contributes only a factor of ` (up

to logarithmic factors in n). Thus, the main contribution to the circuit counts comes from

the mean, and, in fact, comes from circuits which are exactly trees traversed forwards and

backwards.

Interestingly, that the dominant contributions arise from trees is analogous to what

happens when using the trace method on random matrices of independent entries. Our

expectation bounds (Section 3.5.3) essentially show that the model G(n, m, d1, d2) adds

edges close to independently when exploring small enough neighborhoods. And the

combinatorial arguments of Section 3.5.4 show that there are not enough contributions

from paths with cycles to compensate for this.
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In doing so, however, we are forced to consider tangled paths but which are built up

of tangle-free components. This delicate issue was first made clear by Friedman [2004]

who introduced the idea of tangles and a “selective trace.” Bordenave [2015], who we

follow closely in this part of our analysis, also has a good discussion of these issues and

their history. We use the fact that

E
(
‖B̄`‖2k

)
≤ E

(
Tr
(
(B̄`)(B̄`)∗

)k
)

, (3.2)

and so deal with circuits built up of 2k segments which are `-tangle-free. Notice that the

first segment comes from B̄`, the second from (B̄`)∗, etc. Because of this, the directionality

of the edges along each segment alternates. See Figure 3.2 for an illustration of a path

which contributes for k = 2 and ` = 2. Also, while each segment γi is `-tangle-free, the

overall circuit may be tangled, since later segments can revisit vertices seen before.

3.5.2 Matrix decomposition

For this section, we will assume G is `-tangle-free, which will hold with high probability.

Let Γ`
e f be the set of all non-backtracking paths in G of length `+ 1, starting at oriented

edge e and ending at f . For a path γ ∈ Γ`
e f , we write γ = (e1, e2, . . . , e`+1) where ei ∈ ~E

for all i, e1 = e and e`+1 = f . Similarly, define F`
e f ⊂ Γ`

e f be the set of all non-backtracking,

tangle-free paths in G of length `+ 1, starting at oriented edge e and ending at f . Then,

(B`)e f = ∑
γ∈Γ`

e f

`

∏
t=1

Betet+1 = ∑
γ∈F`

e f

`

∏
t=1

Betet+1 ,

where we note the last equality requires G to be `-tangle-free. Denote by B̄ the matrix

with entries equal to

(B̄`)e f = ∑
γ∈F`

e f

`

∏
t=1

(B− S)etet+1
,

where

S =

 0 d2−1
n 11∗

d1−1
m 11∗ 0

 .
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Figure 3.2: An example circuit that contributes to the trace in Eqn. (3.2), for k = 2 and
` = 2. Edges are numbered as they occur in the circuit. Each segment {γi}4

i=1 is of length
`+ 1 = 3 and made up of edges 3(i − 1) + 1 through 3i. The last edge of each γi is the
first edge of γi+1, and these are shown in purple. Every path γi with i even follows the
edges backwards due to the matrix transpose. However, this detail turns out not to make
any difference since the underlying graph is undirected. Our example has no cycles in
each segment for clarity, but, in general, each segment can have up to one cycle, and the
overall circuit may be tangled.

Note that B̄ is an almost centered version of B, and Ker(S) = Ker(T) = span(1α, 1−α).

The following telescoping sum formula appears in Bordenave [2015]:

`

∏
s=1

xs =
`

∏
s=1

ys +
`

∑
j=1

j−1

∏
s=1

ys(xj − yj)
`

∏
t=j+1

xt.

Using this, with xs = Beses+1 and ys = B̄eses+1 , we obtain the following relation:

(B`)e f = (B̄`)e f + ∑
γ∈F`

e f

`

∑
j=1

j−1

∏
i=1

B̄eiei+1Sejej+1

`

∏
t=j+1

Betet+1 . (3.3)

This decomposition breaks the elements in F`
e f into two subpaths, also non-backtracking

and tangle-free, of length j and ` − j, respectively. To recover the matrices B and B̄ by

rearranging Eqn. (3.3), we need to also count those tangle-free subpaths that arise from
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tangled paths. While breaking a tangle-free path will necessarily give us two new tangle-

free subpaths, the converse is not always true. This extra term generates a remainder that

we define now.

Let T`,j
e f ⊂ Γ`

e f be the set of non-backtracking paths in Kn,m (the complete bipartite

graph on n left and m right vertices) of length `+ 1, starting at e and ending at f , such

that overall the path is tangled but the first j and last `− j edges form tangle-free subpaths

of G. Set the remainder

R`,j
e f = ∑

γ∈T`
e f

j−1

∏
i=1

B̄eiei+1Sejej+1

`

∏
i=j+1

Beiei+1 . (3.4)

Adding and subtracting ∑`
j=1 R`,j

e f to Eqn. (3.3) and rearranging the sums, we obtain

B` = B̄` +
`

∑
j=1

B̄jSB`−j −
`

∑
k=1

R`,k. (3.5)

Multiplying Eqn. (3.5) on the right by x ∈ Ker(T) and using that B`−jx is also within

Ker(T), since it is just the space spanned by the leading eigenvectors, we find that the

middle term is identically zero. Thus,

‖B`x‖ ≤ ‖B̄`x‖+
∥∥∥∥∥ `

∑
k=1

R`,jx

∥∥∥∥∥ ≤ ‖B̄`‖+
`

∑
k=1
‖R`,j‖. (3.6)

3.5.3 Expectation bounds

Our goal is to find a bound on the expectation of certain random variables which are

products of B̄e f along a cycle. To do this, we will need to bound the probabilities of

different subgraphs when exploring G.

The next Lemma follows from McKay [1981b], Theorem 3.5. We use the following

notation: Let H be a subgraph of G with vertex set {v1, v2, . . . , vk}. Let di be the degree of

vi in G, so di = d1 if vi is in the set V1 and d2 if not. Also, denote by hi the degree of vi in

H. For natural numbers x and t, we use

(x)t = x(x− 1)(x− 2) · · · (x− t + 1)
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to denote the falling factorial.

Lemma 7. Let H ⊂ Kn,m such that |E(H)| = o(n) and G ∼ G(n, m, d1, d2). Then

P(H ⊂ G) ≤ ∏k
i=1(di)hi

(nd1 − 4d2)|E(H)|
,

and

P(H ⊂ G) ≥ ∏k
i=1(di)hi

(nd1 − 1)|E(H)|

(
nd1 − |E(H)| − 5d2

nd1 − c|E(H)| − 5d2

)|E(H)|
,

for some explicit constant c < 1, where d = max(d1, d2).

Crucially, we will use Lemma 7 to show that the appearance of edges in random bi-

partite biregular graphs are weakly correlated, as long as the number of edges is not to

big. Computations are similar to those carried out in [Brito et al., 2016].

Lemma 8. Let G ∼ G(n, m, d1, d2) and let H ⊂ Kn,m such that |E(H)| = o(n). Let e be an

edge not in H, such that H and H ∪ {e} have the same number of connected components, and let

n1 = m, n2 = n.

(i) If e and H share an endpoint of degree di in G, it holds that

P(e ∈ G|H ⊂ G) ≤ di − 1
ni

+ O
(
|E(H)|

n2

)
.

(ii) If e has exactly one endpoint in H, and this vertex has degree one in H and degree di in G,

then

P(e ∈ G|H ⊂ G) =
di − 1

ni
+ O

(
|E(H)|

n2

)
.

(iii) If e has endpoints in both V1 and V2, then we can use the bound in (i) with di = d1 or d2.

Proof. Let e = (u, v), where v is the shared endpoint in H. Assume v is degree d2 in G; the

results for d1 are analogous. Vertex u 6∈ V(H) must then have degree d1 in G. For part (i),



54

Figure 3.3: The different cases of Lemma 8, which concerns P(e ∈ G|H): the probability
of an edge e existing in the random graph G, given an observed subgraph H, shown in
green. The new edge e connects at vertex v. All the green vertices lie in H. When the
connecting vertex has degree one in subgraph H, i.e. hv = 1 and case (ii), it induces a
two-path. The probability of that edge is closer to the entries of the centering matrix S if
hv > 1, case (i).

notice that the graph H ∪ {e} has at least one vertex v with degree equal to hv + 1. Using

the upper bound in Lemma 7, we get

P(H ∪ {e} ⊂ G) ≤ d1(d2 − hv)

nd1 − 4d2 − |E(H)|P(H ⊂ G)

≤ d2 − 1
n

(
1 + O

(
|E(H)|

n

))
P(H ⊂ G).

For part (ii), note that hv = 1 and employ the lower bound in Lemma 7 to get equality.

Remark. Assuming m ≥ n, and using d1−1
m = d2−1

n + 1
n −

1
m , we see that the bound with d1 is

weaker by a factor of O( 1
n ). Finally, P(e ∈ G|H) ≤ d1

m for any isolated edge.

Remark (Probability of tree edges). The centering matrix S has entries (d2 − 1)/n and (d1 −

1)/m. During the exploration process, Lemma 8 states that the probability of adding a new edge

differs from the entries of the centering matrix (which are close to but not exactly the expectation)

by an order 1/n2 correction precisely when adding that edge creates a two-path. See Figure 3.3.

Let γ = (γ1, γ2, · · · , γ2k) be a circuit obtained by the concatenation of 2k non-backtracking

walks of length `. These circuits will appear when we apply the trace method in Sec-

tion 3.5.5. The circuit γ is traversed in this order: We start at the initial vertex of γ1, move
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along this path until we meet γ2, continue along this path, etc. Denote by ~E(γ) the set

of oriented edges traversed by γ, and E(γ) the same set of edges without orientation. A

subpath of γ is just an ordered path of edges traversed as described above. Define

Xγ = ∏
e f∈γ

(
B̄e f
)me f , (3.7)

where e, f ∈ ~E(γ), and e f ∈ γ means that the oriented path e f is a subpath of γ when

traversed as described above, and me f is the total number of times we traverse e f in γ.

The main result of this section is the following Theorem:

Theorem 9. Let γ = (γ1, γ2, · · · , γ2k) be a circuit obtained by the concatenation of 2k non-

backtracking walks of length `. If γ visits K = |E(γ)| = o(n) different edges and |V(γ) ∩V2| =

r, then

E (Xγ) ≤
Dγ

mrnK−r

(
K
n

)ω

(1 + o(1)), (3.8)

where d = max(d1, d2),

ω ≥
⌈

∑e f∈γ 1{me f + m f−1e−1 = 1}
6d2

⌉
,

and Dγ = (d1 − 1)r(d2 − 1)K−r if ω = 0, and Dγ = dK otherwise.

The proof of Theorem 9 proceeds like this: We pick an ordering of the set of undirected

edges visited by γ. With this ordering, we define a filtration, or sequence of nested sigma

algebras, {Ft}K
t=1 each containing the information of the first t edges in this order. We

use the tower of expectation to bound the right hand side of Eqn. (3.8). At each step, a

new edge is removed from the filtration and we are able to improve our current bound

via Lemma 8. The ordering of the edges is done in a way that allows us to use part (ii)

of Lemma 8 a maximal number of times, which will add ω extra factors of 1/n. These

extra factors come from so-called “good” edges (explained shortly) in two-paths which

are traversed exactly once.
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We start by describing the ordering of the edges. Let E = {ei}K
i=1 be a set of undirected

edges. A permutation π of [K] can be identified with an ordering in E by taking the first

edge to be eπ(1), the second to be eπ(2), etc. For a subset F ⊆ E of edges, define

N(F) = {e ∈ E : e shares a vertex with some f ∈ F}

of neighbors of F. Notice that the orientation is not relevant in this definition.

Given an ordering π, we say that the edge eπ(j) is a good edge if there is exactly one

value of i ≤ j− 1 such that eπ(i) ∈ N(eπ(j)). In other words, the jth edge is good if it has

exactly one neighbor among the previous edges. Thus, when we add a good edge to the

graph induced by the previous edges, it must induce a two-path. The following Lemma

tells us how many good edges we can guarantee with our ordering π, and gives a recipe

to construct that ordering.

Lemma 10. Let F be some set of undirected edges in a graph with maximal degree d, with p2(F)

equal to the number of two-paths in F. Then there exists an ordering π of the edges with at least⌈
p2(F)
6d2

⌉
good edges.

Proof. We now construct such an ordering by working with three sets of edges E1, E2, and

E3. At time t = 0, start with the sets E1
0 = ∅, E2

0 = ∅ and E3
0 = F. For times t ≥ 1, we

build the ordering π iteratively:

1. Choose ei, ej ∈ E3
t−1 such that ei ∈ N(ej), i.e. eiej is a two-path.

2. Set π(2t− 1) = i and π(2t) = j.

3. Set E1
t = E1

t−1 ∪ {ei, ej}, E2
t = E2

t−1 ∪ N({ei, ej})\E1
t and E3

t = F\(E1
t ∪ E2

t ).

At all times, E1
t , E2

t and E3
t form a disjoint partition of F. They correspond to: the set

of edges already ordered E1, the set of the neighbors of the edges already ordered E2, and

the complement of those two sets E3. Also, it is not hard to check that e2t is a good edge

for all t. This process will end at step t = T when one of the following exclusive events

happen:
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(a) The set E3
T = ∅ and we defined π(t) for all 1 ≤ t ≤ 2T. We now arbitrarily set π(t)

for times 2T + 1 ≤ t ≤ |F| using the edges in E2
T. By construction, we have at least T

good edges. Since at each step we remove from E3 at most 3d edges, and each edge

participates in less than 2d two-paths, we conclude that

T ≥
⌈

p2(F)
6d2

⌉
.

(b) After T steps, no two edges in E3
T form a two-path. By construction, E1

T and E3
T are

disconnected. We use this to continue the ordering for times 2T+ 1 ≤ t ≤ |F|: Because

γ is a connected walk, for each ei ∈ E3
t there exists some ej ∈ E2

t such that eiej or ejei

is a subpath of γ. Set π(2t + 1) = j and π(2t + 2) = i. With this choice, ei is good.

We update E1
t+1, E2

t+1, and E3
t+1 as before. The process is repeated until time t = T∗,

when E3
T∗ = ∅. The number of good edges is again at least

T∗ ≥
⌈

p2(F)
6d2

⌉
.

Remark. The above Lemma gives an algorithm for ordering some set of edges F ⊆ E in a way

that guarantees good edges. Suppose this process finishes at time T. The edges in E1
T are added in

a way that they form a disjoint set of two-paths, and half of these edges are good. We note that we

are free to add the edges left in E \ E1
T however we would like.

We will also need the following Lemma:

Lemma 11 (Brito et al. [2015], Lemma 11). Let X ∼ Bernoulli(q) with q ≤ p + r, where

0 ≤ q, p ≤ 1. Then for any integer m > 1, the expectation E ((X− p)m) ≤ p + r.

Proof. Assume q < p. Then,

E(|X− p|m) ≤ (1− p)m p + pm ≤ p.
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The latter inequality follows easily by noting that it is satisfied for m = 2, and that (1−

p)m p + pm is a decreasing function of m for all 0 ≤ p ≤ 1.

If q > p, write q = p + r′ with 0 < r′ < r. We get:

E(|X− p|m) ≤ (1− p)m(p + r′) + pm ≤ (1− p)m p + pm + r′ ≤ p + r ,

due to similar considerations.

Proof of Theorem 9. Let E(γ) = {e1, e2, . . . , eK} be the set of undirected edges visited by γ,

ordered by some permutation π of K = |E(γ)| elements, and call Ht the graph induced

by the set of undirected edges {e1, . . . , et}. To get an adequate upper bound, we order

the edges so that we have a maximal number of good edges with two-path multiplicity

one. Let F be the set of undirected edges whose oriented counterparts, in either direction,

participate in a two-path which occurs only once in γ. Then,

F = {e ∈ E(γ) : me f + m f−1e−1 = 1 for some two-path e f ∈ γ }.

Let p2(F) denote the number of two-paths in F, then p2(F) ≥ ∑e f∈γ 1{me f + m f−1e−1 =

1}. First, we order the edges in F following the algorithm in Lemma 10, producing an

ordering π̃. The actual ordering π is set by using π(i) = π̃(i) for 1 ≤ i ≤ |F| and

arbitrarily extending π to the rest of the edges E(γ) \ F.

Let ~At ⊂ ~E(γ ∪ γ−1) be the set of oriented edges

~At = {~e1, (~e1)
−1, . . . ,~et, (~et)

−1}

containing the first t edges with both possible orientations. For simplicity and without

any loss of generality, we make the convention that ~et goes from set V1 to V2. We use

(~e )−1 to represent the directed edge with reversed orientation of ~e. Define the Ft as the

sigma algebra generated by ~At, for t = 1, 2, . . . , K. Then F1 ⊂ F2 ⊂ · · · ⊂ FK, so {Ft} is

a filtration.
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Recall the definition of Xγ from Eqn. (3.7). We define the random variables {Xt}2≤t≤K

as

Xt = ∏
e f

(
B̄e f
)me f ,

where the product is over all e, f ∈ ~At, where e f is a subpath of γ, and exactly one of

{e, f } is in the set ~At \ ~At−1 = {~et, (~et)−1}. Thus, Xt is the product of all factors in Xγ

which involve et and earlier edges according to π. Note that the following definition is

equivalent:

Xt = ∏
e, f0, f1, f2, f3

(
B̄e f0

)me f0

(
B̄e−1 f1

)me−1 f1
(

B̄ f2e
)m f2e

(
B̄ f3e−1

)m f3e−1
, (3.9)

where e, e−1 ∈ ~At \ ~At−1, and f0, f1, f2, f3 ∈ ~At−1. It is not hard to see that Xγ = ∏K
t=2 Xt.

Defining Yt = ∏t
j=2 Xj for 2 ≤ t ≤ K, we see that Xγ = YK and Yt = XtYt−1 for 2 < t ≤ K.

Also, every Yt is Ft−measurable. With these ingredients, by the law of total probability

we have the following “tower of expectation:”

E(Xγ) = E(E(YK|FK−1)) = E(E(YK−1XK|FK−1)) = E(YK−1E(XK|FK−1)). (3.10)

We focus on the term E(XK|FK−1)) in Eqn. 3.10. For oriented edges e, f0, f1, f2, f3, we

have

(Be f0 | f0) = (Be−1 f1
| f1) = (B f2e| f2) = (B f3e−1 | f3),

where we assume that the orientation of the edges is such that these entries are not zero.

These equalities say that, under the event that f0, f1, f2, f3 are edges of the graph, the pres-

ence of edge e or e−1 attached to any of them is equivalent, making these random variables

are identical. Note that this involves the non-backtracking matrix B, not its “centered”

version B̄. These equivalences allow us to combine the multiplicities in Eqn. 3.9.

Let {Zt}2≤t≤K be independent random variables with distribution

Zt
d
= (B~et f | f ),
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where f ∈ ~At−1,~et ∈ ~At \ ~At−1, and~et f is a subpath of γ. Since our convention is that~eK

terminates in set V2, we have

E(XK|FK−1) = E

((
ZK −

d1 − 1
m

)a (
ZK −

d2 − 1
n

)b
)

, (3.11)

where a is the number of times the new edge~eK appears as B f2~eK and B(~eK)−1 f1
in Xt, and b

is the number of times it appears as B~eK f0 and B f3(~eK)−1 . That is,

a = ∑
f1, f2∈~AK−1

m(~eK)−1 f1
+ m f2~eK

and

b = ∑
f0, f3∈~AK−1

m~eK f0 + m f3(~eK)−1 .

To evaluate Eqn. (3.11), we have several cases depending on the values of a and b:

Case 1: If a ≥ 2, then(
ZK −

d1 − 1
m

)a (
ZK −

d2 − 1
n

)b
≤
(

ZK −
d1 − 1

m

)2

.

By Lemmas 11 and 8,

E

((
ZK −

d1 − 1
m

)2
)
≤ d1 − 1

m
+ O

(
K

m2

)
.

When b ≥ 2, the bound is analogous with (d2 − 1)/n instead.

Case 2: If a = b = 1, expand the right hand side of Eqn. (3.11) and use Lemma 8 to get

E

((
ZK −

d1 − 1
m

)(
ZK −

d2 − 1
n

))
= E

(
ZK

(
1− d1 − 1

m
− d2 − 1

n

)
+ O

(
1

nm

))
≤ d2 − 1

n
+ O

(
K
n2

)
.

Case 3: If a = 0 and b > 1 or b = 0 and a > 1, apply Lemma 11 directly to get the same

bound as case 1 or 2.
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Case 4: If a = 0 and b = 1, this is the one of the times we may see a bound of second

order in n. Suppose that b = 1. By Lemma 8 part (ii), for Eqn. (3.11) we then have

E

(
ZK −

d2 − 1
n

)
≤


d2−1

n + O
(

K
n2

)
, eK is not a good edge

O
(

K
n2

)
, eK is a good edge

Case 5: If b = 0 and a = 1, we may also see a bound of second order in n. This is

analogous to the previous case, and we get that

E

(
ZK −

d1 − 1
m

)
≤


d1−1

m + O
(

K
n2

)
, eK is not a good edge

O
(

K
n2

)
, eK is a good edge

These cases say that adding edge eK to the graph HK−1 results in a different upper

bound for E(XK|FK−1) depending on: (1) the multiplicity of the two-paths in which it

appears, (2) whether it connects to a vertex in V1 or V2 when it attaches to HK−1, and (3)

whether it is a good edge. Note that cases 1–3 are ambiguous about what bipartite set eK

connects to in the graph HK−1. If both endpoints of eK connect to edges in HK−1, then it is

not a good edge, and Lemma 8 part (iii) says either degree bound is applicable.

Using Eqn. 3.11 and summarizing all of the cases enumerated above, we see that

Eqn. (3.10) becomes

E(Xγ) = E(YK−1E(XK|FK−1))

≤



(
d1−1

m + O
(

K
n2

))
E(YK−1), eK connects to V1 or both and a + b > 1(

d2−1
n + O

(
K
n2

))
E(YK−1), eK connects to V2 or both and a + b > 1

O
(

K
n2

)
E(YK−1), eK is good and a + b = 1(

d2
n + O

(
K
n2

))
E(YK−1), eK is isolated from HK−1 .

(3.12)

Again, we see that if eK connects two vertices already in HK−1, we are free to choose which

bound. We now apply the same argument to E(YK−1) = E(YK−2E(XK−1|FK−2)), and

continue this process. After a total K− 2 times, we get to E(Y2) = E(X2) = E(E(X2|F1)).
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The conditional expectation E(Y2|F1) is just another term like in Eqn. (3.12), and then

there is a final term that comes from the first edge. Again, we use the bound that best

balances r and Q.

After all of these iterations, we end up with a bound of the form:

E(Xγ) ≤
(

d1 − 1
m

)Q (d2 − 1
n

)K−Q−ω (d2

n

)ω (K
n

)ω

(1 + o(1))

=
Dγ

mQnK−Q

(
K
n

)ω

(1 + o(1)) .

Here, Q is the number of times the added edge attaches only in set V1. The powers of

(d1 − 1) and (d2 − 1) are counted in Dγ = (d1 − 1)Q(d2 − 1)K−Q. The exponent ω counts

the number of times we add a good edge with a + b = 1, which gives an extra factor of

K/n in the expectation. But for every good edge guaranteed by our ordering, we must

also add an isolated edge first, which gives the weaker factor of d in Dγ for ω > 0.

The order that we add the edges allows us to control Q. First of all, the edges that

are ordered in Lemma 10 can be added in such a way that every vertex in V2 contributes

to Q: For a After adding the edges which we guarantee to be good, the process stops at

some time t = T. For t > T, pick some u ∈ V1 \ V(Ht−1) and an edge e incident to u. If

this edge e = (u, v) connects to a vertex v already in the current V(Ht−1), then v already

has a factor in Q. If v 6∈ V(Ht−1), it is a currently isolated edge, and we take the bound

that allows us to increase Q. Once every u ∈ V1 is contained in Ht−1, any new edge will

connect to just V1 or both, and we can add one to Q for each v ∈ V2 that needs it. Once

Q = r, every vertex has been discovered, and thus any edges left over will connect to

both sets V1 and V2. In this case, we use the bound that does not increase Q.

By Lemma 10, we construct an ordering π which guarantees that certain edges are

good. These edges must also have a + b = 1. For a guaranteed good edge e2t ∈ F, all of

the edges in N({e2t}) \E(H2t−1) appear later. Since e2t occurs in a two-path of multiplicity

one in H2t, by construction, then a + b = 1. We complete the proof with

ω ≥
⌈

t(F)
6d2

⌉
≥
⌈

∑e f∈γ 1{me f + m f−1e−1 = 1}
6d2

⌉
.
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3.5.4 Path counting

This section is devoted to count the number of ways non-backtracking walks can be con-

catenated to obtain a circuit as in Section 3.5.2. We will follow closely the combinatorial

analysis used in [Brito et al., 2016]. In that paper, the authors needed a similar count for

self-avoiding walks. We make the necessary adjustments to our current scenario. This is

similar to the “cycling times” arguments of Bordenave [2015].

Our goal is to find a reasonable bound for the number of circuits which contribute

to the trace bound, Eqn. (3.2) and shown graphically in Figure 3.2. Define Cr
v,e as those

circuits which visit exactly v = |V(γ)| different vertices, r = |V(γ) ∩ V2| of them in the

right set, and e = |E(γ)| different edges. This is a set of circuits of length 2k` obtained

as the concatenation of 2k non-backtracking, tangle-free walks of length `. Note, these

are undirected edges in E(G) not directed edges in ~E(G). We denote such a circuit as

γ = (γ1, γ2, · · · , γ2k), where each γj is a length ` walk.

To bound Cr
v,e = |Cr

v,e|, we will first choose set of vertices and order them. The circuits

which contribute are indeed directed non-backtracking walks. However, by considering

undirected walks along a fixed ordering of vertices, that ordering sets the orientation of

the first and thus the rest of the directed edges in γ. Thus, we are counting the directed

walks which contribute to Eqn. (3.2). We relabel the vertices as 1, 2, . . . , v as they appear

in γ. Denote by Tγ the spanning tree of those edges leading to new vertices as induced by

the path γ. The enumeration of the vertices tells us how we traverse the circuit and thus

defines Tγ uniquely.

We encode each walk γj by dividing it into sequences of subpaths of three types, which

in our convention must always occur as type 1 → type 2 → type 3, although some may

be empty subpaths. Each type of subpath is encoded with a number, and we use the

encoding to upper bound the number of such paths that can occur. Given our current
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position on the circuit, i.e. the label of the current vertex, and the subtree of Tγ already

discovered (over the whole circuit γ not just the current walk γj), we define the types and

their encodings:

Type 1: These are paths with the property that all of their edges are edges of Tγ and have

been traversed already in the circuit. These paths can be encoded by their end

vertex. Because this is a path contained in a tree, there is a unique path connecting

its initial and final vertex. We use 0 if no old edges occur before the type 2 path,

i.e. the path is empty.

Type 2: These are paths with all of their edges in Tγ but which are traversed for the first

time in the circuit. We can encode these paths by their length, since they are

traversing new edges, and we know in what order the vertices are discovered.

We use 0 if the path is empty.

Type 3: These paths are simply a single edge, not belonging to Tγ, that connects the end

of a path of type 1 or 2 to a vertex that has been already discovered. Given our

position on the circuit, we can encode an edge by its final vertex. Again, we use

0 if the path is empty.

Now, we decompose γj into an ordered sequence of triples to encode its subpaths:

(p1, q1, r1)(p2, q2, r2) · · · (pt, qt, rt),

where each pi characterizes subpaths of type 1, qi characterizes subpaths of type 2, and ri

characterizes subpaths of type 3. These subpaths occur in the order given by the triples.

We perform this decomposition using the minimal possible number of triples.

Now, pi and ri are both numbers in {0, 1, ..., v}, since our cycle has v vertices. On

the other hand, qi ∈ {0, 1, ..., `} since it represents the length of a subpath of a non-

backtracking walk of length `. Hence, there are (v + 1)2(`+ 1) possible triples. Next, we

want to bound how many of these triples occur in γj. We will use the following lemma.
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Figure 3.4: Encoding an `-tangle-free walk, in this case the first walk in the circuit γ1,
when it contains a cycle. The vertices and edges are labeled in the order of their traver-
sal. The segments γa, γb, and γc occur on edges numbered (1, 2, 3); (4 + 6i, 5 + 6i, 6 +
6i, 7 + 6i, 8 + 6i, 9 + 6i) for i = 0, 1, . . . c; and (10 + 6c), respectively. The encoding is
(0, 3, 0)|(0, 4, 3)(4, 0, 0)‖(0, 1, 0). Suppose c = 1. Then ` = 22 and the encoding is of
length 3+ (4+ 1+ 1)(c + 1) + 1, we can back out c to find that the cycle is repeated twice.
The encodings become more complicated later in the circuit as vertices see repeat visits.

Lemma 12. Let (p1, q1, r1)(p2, q2, r2) · · · (pt, qt, rt) be a minimal encoding of a non backtracking

walk γj, as described above. Then ri = 0 can only occur in the last triple i = t.

Proof. We can check this case by case. Assume that for some i < t we have (pi, qi, 0),

and consider the concatenation with (pi+1, qi+1, ri+1). First, notice that both pi+1 and

qi+1 cannot be zero since then we will have (pi, qi, 0)(0, 0, v∗) which can be written as

(pi, qi, v∗). If qi 6= 0, then we must have pi+1 6= 0. Otherwise, we split a path of new edges

(type 2), and the decomposition is not minimal. This implies that we visit new edges and

move to edges already visited, hence we need to go through a type 3 edge, implying that

ri 6= 0. Finally, if pi 6= 0 and qi = 0, then we must have pi+1 = 0; otherwise, we split a

path of old edges (type 1). We also require qi+1 6= 0, but (pi, 0, 0)(0, qi+1, ri+1) is the same

as (pi, qi+1, ri+1), which contradicts the minimality condition. This covers all possibilities

and finishes the proof.

Using the lemma, any encoding of a non-backtracking walk γj has at most one triple
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with ri = 0. All other triples indicates the traversing of a type 3 edge. We now give a

very rough upper bound for how many of such encodings there can be. To do so, we will

use the tangle-free property and slightly modify the encoding of the paths with cycles.

Consider the two cases:

Case 1: Path γj contains no cycle. This implies that we traverse each edge within γj once.

Thus, we can have at most χ = e− v + 1 many triples with ri 6= 0. This gives a

total of at most (
(v + 1)2(`+ 1)

)χ+1

many ways to encode one of these paths.

Case 2: Path γj contains a cycle. Since we are dealing with non-backtracking, tangle-free

walks, we enter the cycle once, loop around some number of times, and never

come back. We change the encoding of such paths slightly. Let γa
j , γb

j , and γc
j be

the segments of the path before, during, and after the cycle. We mark the start of

the cycle with | and its end with ‖. The new encoding of the path is:

(pa
1, qa

1, ra
1) · · · (pa

ta , qa
ta , ra

ta) | (pb
1, qb

1, rb
1) · · · (pb

tb , qb
tb , rb

tb) ‖ (pc
1, qc

1, rc
1) · · · (pc

tc , qc
tc , rc

tc),

where we encode the segments separately. Observe that each a subpath is con-

nected and self-avoiding. The above encoding tells us all we need to traverse γj,

including how many times to loop around the cycle: since the total length is `,

we can back out the number of circuits around the cycle from the lengths of γa
j ,

γb
j , and γc

j . See Figure 3.4. Following the analysis made for Case 1, the subpaths

γa
j , γb

j , γc
j are encoded by at most χ + 1 triples, but we also have at most ` choices

each for our marks | and ‖. We are left with at most

`2
(
(v + 1)2(`+ 1)

)χ+1

ways to encode any path of this kind.
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Together, these two cases mean there are less than 2`2 ((v + 1)2(`+ 1)
)χ+1 such paths.

Now we conclude by encoding the entire path γ = (γ1, . . . , γ2k). We first choose v

vertices, r in the set V2, and order them, which can occur in (m)r(n)v−r ≤ mrnv−r different

ways. Finally, in the whole path γ we are counting concatenations of 2k paths which are

`-tangle-free. Therefore, we conclude with the following Lemma:

Lemma 13. If Cr
v,e = |Cr

v,e|, then this satisfies

Cr
v,e ≤ mrnv−r22k`4k

(
(v + 1)2(`+ 1)

)2k(χ+1)
. (3.13)

3.5.5 Bounds on the norm of B̄` and R`,j.

Theorem 14. Let ` ≤ c log(n) where c is a universal constant. It holds that

‖B̄`‖ ≤ log(n)15 ((d1 − 1)(d2 − 1))`/4

asymptotically almost surely.

Proof. For any natural number k, we have

E
(
‖B̄`‖2k

)
≤ E

(
Tr
(
(B̄`)(B̄`)∗

)k
)
= E

(
∑
γ

2k`

∏
i=1

B̄eiei+1

)
. (3.14)

The sum is taken over the set of all circuits γ of length 2k`, where γ = (γ1, γ2, . . . , γ2k) is

formed by concatenation of 2k tangle-free segments γs ∈ F`, with the convention es+1
1 =

es
`+1. Again, refer to Figure 3.2 for clarification.

Recall that two oriented edges e1 and e2 form a subpath of γ if we traverse one right

after the other. We call such subpath a two-path. With this notation, we define three

disjoint sets of circuits:

C1 = {γ : all two-paths in γ are traversed at least twice, disregarding the orientation},

C2 = {γ : at least one two-path in γ is traversed exactly once and v ≤ kl + 1}, and

C3 = {γ : at least one two-path in γ is traversed exactly once and v > kl + 1}.
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The reason for this division is that, by Lemma 8 and Theorem 9, when we have any two-

path traversed exactly once, the expectation of the corresponding circuit is smaller. This

is precisely because the matrix B̄ is nearly centered. Hence, we will see that the leading

order terms in Eqn. (3.14) will come from circuits in C1.

Define the expectations

Ij = E

 ∑
γ∈Cj

2k`

∏
i=1

B̄eiei+1


for j = 1, 2 and 3, so that

E
(
‖B̄`‖2k

)
≤ I1 + I2 + I3. (3.15)

We will bound each term on the right hand side above. From Theorem 9 and the path

counting bound in Lemma 13, we get that

Ij ≤ ∑
γ∈Cj

Cr
v,e

Dγ

mr n|E(γ)|−r

(
|E(γ)|

n

)ω(γ)

(1 + o(1))

≤ ∑
v,e,r

∑
γ∈Cj∩Cr

v,e

Cr
v,e

D∗γ
mr ne−r

( e
n

)ω∗
(1 + o(1))

≤ ∑
v,e,r

∑
γ∈Cj∩Cr

v,e

nv−e(2`)4k
(
(v + 1)2(`+ 1)

)2k(χ+1)
D∗γ
( e

n

)ω∗
(1 + o(1)) (3.16)

where D∗γ = maxγ∈Cr
v,e Dγ, and ω∗ = minγ∈Cr

v,e ω(γ). Since we have employed Theorem 9,

we split the circuits into subsets depending on the number of vertices v = |V(γ)|, number

of edges e = |E(γ)|, and the number of vertices r in set V2. The sum over γ ∈ Cj implicitly

sums over v, e, and r. We will use Eqn. 3.16 to bound each Ij.

Bounding I1

In all cases, each circuit traverses 2k` two-paths. Hence, for each γ ∈ C1, where each

two-path is repeated twice, we have at most k` different two-paths. Furthermore, since

each edge can be in multiple two-paths, we have that the total number of different two-

paths is greater than or equal to the total number of edges traversed by γ. We then have
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that e ≤ k`. Since γ is connected, we have v ≤ k`+ 1. Lastly, observe that ω = 0 for any

γ ∈ C1. Thus, on the right hand side of Eqn. (3.16) we get

I1 ≤
k`+1

∑
v=`+1

k`

∑
e=v−1

nv−e(2`)4k
(
(v + 1)2(`+ 1)

)2k(χ+1)
D∗γ (1 + o(1)).

The leading order term in n corresponds to v = e + 1 = k`+ 1 and e = k`. Because any

γ is connected, for these values of v and e the undirected graph induced by γ is a tree,

which implies that χ = 0. We conclude that

I1 ≤ n
(

2`(k`+ 2)2(`+ 1)
)4k

((d1 − 1)(d2 − 1))d
k`
2 e (1 + o(1)). (3.17)

Note that this term comes from paths γ that leave some vertex, explore the graph up

to a distance k`, then return along the same path in the opposite direction, thus traversing

the undirected path twice. Each length ` segment is non-backtracking and tangle-free,

but the overall path is backtracking. At the end it must backtrack to reverse direction, as

it does at each point where the segments are joined, as shown in Figure 3.2.

Bounding I2

We turn our attention to I2. Because there is at least one two-path traversed exactly once,

we have e ≥ v for γ ∈ C2. Eqn. (3.16) becomes

I2 ≤
k`+1

∑
v=`+1

2k`

∑
e=v

nv−e(2`)4k
(
(v + 1)2(`+ 1)

)2k(χ+1)
D∗γ,

where we dropped the term
( e

n
)ω∗ ≤ 1. Now the leading order term comes when e = v =

k`+ 1, implying χ = 1 and yielding

I2 ≤
(

2`(k`+ 2)2(`+ 1)
)4k

dk`(1 + o(1)). (3.18)

Bounding I3

We focus on I3 last. Notice that cycles in C3 will visit many vertices, since v > k`+ 1. We

first show that, in this case, ω(γ) is also large. Let v = k`+ t. Define p2(γ) as the number
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of different two-paths traversed by γ, and p∗2(γ) as the number of two-paths traversed

exactly once. We have p2(γ) ≥ e ≥ v = k`+ t. Also, since γ has length 2k`, we deduce

that

2(p2(γ)− p∗2(γ)) + p∗2(γ) ≤ 2k`,

which implies that p∗2(γ) ≥ 2t. Therefore, ω∗ ≥ 2t
6d2 . Eqn. (3.16) then gives

I3 ≤
2k`

∑
v=k`+1

2k`

∑
e=v

nv−e(2`)4k
(
(v + 1)2(`+ 1)

)2k(χ+1)
D∗γ
( e

n

) 2(v−k`)
6d2

.

Since D∗γ ≤ de, for the leading order term v = e we have

D∗γ
( e

n

) 2(v−k`)
6d2 ≤ dv

( v
n

) 2(v−k`)
6d2

= dk`
(

d
( v

n

) 2
6d2
)(v−k`)

≤ dk`,

since v ≤ 2k` = o(n), d is constant, and v− k` ≥ 1. Now v = e means that χ = 1, and we

get

I3 ≤ k`
(

2`(v + 1)2(`+ 1)
)4k

dk`(1 + o(1)). (3.19)

Finishing the proof of Theorem 14

Now we compute the leading order contribution to E
(
‖B̄`‖2k). We consider

k =

⌊
log(n)

log(log(n))

⌋
.

with ` ≤ 1
8 log(n). We see that I1 has n in front, as opposed to I2 and I3, and that the other

terms are of similar order. Thus, plugging Eqns. (3.17), (3.18) and (3.19) into Eqn. (3.15),

we find that only I1 contributes:

E
(
‖B̄`‖2k

)
≤ I1 ≤ n

(
2`(k`+ 2)2(`+ 1)

)4k
((d1 − 1)(d2 − 1))b

k`+1
2 c (1 + o(1)).

We now apply Markov’s inequality. With this choice of k and `, we have(
2`(k`+ 2)2(`+ 1)

)4k
= O(n28).
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and log(n)30k = n30. Therefore,

P(‖B̄`‖ > log(n)15 ((d1 − 1)(d2 − 1))`/4) ≤
E
(
‖B̄`‖2k)

log(n)30k ((d1 − 1)(d2 − 1))k`/2

≤ n−29
(

2`(k`+ 2)2(`+ 1)
)4k

(d1 − 1)(d2 − 1)(1 + o(1))

= o(1).

Theorem 15. Let 1 ≤ j ≤ ` ≤ c log(n) where c is a universal constant. Then

‖R`,j‖ ≤ log(n)16,

asymptotically almost surely.

Proof. The proof is analogous to the proof of Theorem 14. We have, for any integer k

E
(
‖R`,j‖2k

)
≤ E

(
Tr
(
(R`,j)(R`,j)∗

)k
)
= E

(
∑
γ

2k

∏
s=1

j−1

∏
i=1

B̄es
i es

i+1
Ses

j e
s
j+1

`

∏
i=j+1

Bes
i es

i+1

)
.

(3.20)

Now, the sum is over circuits γ = (γ1, γ2, . . . , γ2k) of length 2k` formed from 2k elements

of T`,j, γs = (es
1, es

2, . . . , es
`+1) for s ∈ [2k], with the convention es+1

1 = es
`+1. Recall the

definition of T`,j in Section 3.5.2 and the definition of R`,j in Eqn. 3.4.

Denote by Dr
v,e as set of circuits that visit exactly v vertices, r of which are in V2, and

e + 2k different edges. We have to slightly modify the argument of Section 3.5.4 for this

case. Here, the extra 2k edges are the jth edge in each segment γs, which connects the first

j edges to the last `− j. For γ ∈ Dr
v,e, each γs is divided into two tangle-free, non back-

tracking walks of length j and `− j. By encoding each of these paths as in Section 3.5.4,

we conclude that there are at most

4`4((v + 1)4(`+ 1)2)χ+1
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such γs. Concatenating 2k many of these gives

Dr
v,e = |Dr

v,e| ≤ nv−rmr(4`4)2k((v + 1)4(`+ 1)2)2k(χ+1). (3.21)

We will now obtain an analagous result to Theorem 9. Returning to Eqn. (3.20), notice

that for each γ we have terms of the form

(B̄e f )
me f (Be f )

m′e f ,

since now two-paths are weighted by entries of both B̄ and B. Here, m′e f is the number of

times we traverse the oriented two-path e f and get contributions from B. If m′e f > 0, we

have

(B̄e f )
me f (Be f )

m′e f ≤ (1− Be f )
me f Be f ≤ Be f

and the corresponding conditional expectation can be upper bounded by d−1
n , by Lemma

8. If m′e f = 0, we proceed as in the proof of Theorem 9. After dropping the term (K/n)ω

terms, which will not be important, we get the corresponding expectation bound

E
(
‖R`,j‖2k

)
≤ ∑

v,e,r
∑

γ∈Dr
v,e

Dr
v,e
(d− 1)e

mrne−r

(
d− 1

n

)2k
(1 + o(1)),

where we included an upper bound on the factor arising from the 2k entries of the matrix

S (see Section 3.5.2). Using the bound in Eqn. (3.21), we obtain

E
(
‖R`,j‖2k

)
≤ ∑

v,e,r
∑

γ∈Dr
v,e

nv−e−2k(4`4)2k((v + 1)4(`+ 1)2)2k(χ+1) (d− 1)2k (1 + o(1)).

Finally, we notice that 1 ≤ v ≤ 2k` and v− 1 ≤ e ≤ 2k`. Furthermore, if v− e = 1, then γ

induces a tree and r takes a unique value. We show that this will lead to a term linear in

n. Also, for fixed v and e there are less than n different values of r. Since we have at most

4k2`2 pairs, we conclude:

E
(
‖R`,j‖2k

)
≤ (4k2`2) n (4`4)2k((2k`+ 1)4(`+ 1)2)2k

(
(d− 1)`+1

n

)2k

(1 + o(1))

≤ (4k2`2) n (4`4)2k((2k`+ 1)4(`+ 1)2)2k (1 + o(1)).
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Now to finish the proof. Let

k =

⌊
log(n)

log(log(n))

⌋
,

so that now

E
(
‖R`,j‖2k

)
≤ n29(1 + o(1)).

Then, by Markov’s inequality and since log(n)32k = n32,

P(‖R`,j‖ > log(n)16) ≤
E
(
‖R`,j‖2k)

log(n)32k

≤ n−314k2`2(4`4)2k((v + 1)4(`+ 1)2)2k(1 + o(1))

= o(1).

3.5.6 Proof of the main result, Theorem 3

By Eqns. (3.1) and (3.6),

|λ2|` ≤ ‖B̄`‖+
`

∑
k=1
‖R`,j‖.

Combining Theorem 14 and 15:

|λ2| ≤
(

log(n)15 ((d1 − 1)(d2 − 1))`/4 + ` log(n)16
)1/`

= ((d1 − 1)(d2 − 1))1/4 + εn.

3.6 Application: Community detection

In many cases, such as online networks, we would like to be able to recover specific com-

munities in those graphs. In the typical setup, a community is a set of vertices that are

more densely connected together than to the rest of the graph.

The model we present here is inspired by the planted partition or stochastic block-

model (SBM) [Holland et al., 1983]. In the SBM, each vertex belongs to a class or commu-

nity, and the probability that two vertices are connected is a function of the classes of the
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vertices. It is a generalization of the Erdős-Rényi random graph. The classes or blocks

in the SBM make it a good model for graphs with community structure, where nodes

preferentially connect to other nodes depending on their communities [Newman, 2010].

There are many methods for detecting a community given a graph. For an overview

of the topic, see Fortunato [2010]. Spectral clustering is a common method which can

be applied to any set of data {ζi}n
i=1. Given a symmetric and non-negative similarity

function S, the similarity is computed for every pair of data points, forming a matrix

Aij = S(ζi, ζ j) = S(ζ j, ζi) ≥ 0. The spectral clustering technique is to compute the leading

eigenvectors of A, or matrices related to it, and use the eigenvectors to cluster the data.

In our case, the matrix in question is just the Markov matrix of a graph, defined soon.

We will show that we can guarantee the success of the technique if the degrees are large

enough.

Our graph model is a regular version of the SBM. We build it on a “frame,” which is a

small, weighted graph that defines the community structure present in the larger, random

graph. Each class is represented by a vertex in the frame. The edge weights in the frame

define the number of edges between classes. What makes our model differ from the SBM

is that the connections between classes are described by a regular random graph rather

than an Erdős-Rényi random graph. However, the graph itself is not necessarily regular.

A number of authors have studied similar models. Our model is a type of random lift

of the frame, which is said to cover the random graph [e.g. Marcus et al., 2013a, Angel et al.,

2015, Bordenave, 2015]. This type of random graph was also studied by Newman and

Martin [2014], who called it an equitable random graph, since the community structure is

equivalent to an equitable partition. This partition induces a number of symmetries across

vertices in each community which are useful when studying the eigenvalues of the graph.

Barrett et al. [2017] studied the effect of these symmetries from a group theory standpoint.

The work of Barucca [2017] is closest to ours: they consider spectral properties of such

graphs and their implications for spectral community clustering. In particular, they show

that the spectrum of what we call the “frame” (in their words, the discrete spectrum,
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which is deterministic) is contained in that of the random graph. They use the resolvent

method (called the cavity method in the physics community) to analyze the continuous

part of the spectrum in the limit of large graph size, and argue that community detection

is possible when the deterministic frame eigenvalues all lie outside the bulk. However,

this analysis assumes that there are no stochastic eigenvalues outside the bulk, which will

only hold with high probability if the graph is Ramanujan. Our analysis shows that, if a

set of pairwise spectral gaps hold between all communities, then this will be the case.

3.6.1 The frame model

We define the random regular frame graph distribution G(n, H) as a distribution of simple

graphs on n vertices parametrized by the “frame” H. The frame H = (V, E, p, D) is a

weighted, directed graph. Here, V is the vertex set, E ⊆ {(i, j) : i, j ∈ V} is the directed

edge set, the vertex weights are p, and the edge weights are D. Note that we drop the

arrows on the edge set in this Section, since it will always be directed. The vertex weight

vector p ∈ R|V|, where ∑i∈V pi = 1, sets the relative sizes of the classes. The edge weights

are a matrix of degrees D ∈ N|V|×|V|. These assign the number of edges between each

class in the random graph: Dij is the number of edges from each vertex in class i to vertices

in class j. The degrees must satisfy the balance condition

piDij = pjDji (3.22)

for all i, j ∈ V where (i, j) or (j, i) are in E. This requires that, for every edge e ∈ E, its

reverse orientation also exists in H. We also require that ni = npi ∈ N for every i ∈ V, so

that the number of vertices in each type is integer.

Given the frame H, a random regular frame graph G ∼ G(n, H) is a simple graph

on n vertices with ni vertices in class i. It is chosen uniformly among graphs with the

constraint that each vertex in class i makes Dij connections among the vertices in class j.

In other words, if i = j, we sample that block of the adjacency matrix as the adjacency

matrix of a Dii-regular random graph on ni vertices. For off-diagonal blocks i 6= j, these
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A Frame B Random regular frame graph

pA = 1/8

pB = 1/8

pC = 3/4

3

3
6 1

12

2

Figure 3.5: Schematic and realization of a random regular frame graph. A, the frame
graph. The vertices of the frame (red = A, green = B, blue = C) are weighted according
to their proportions p in the random regular frame graph. The edge weights Dij set the
between-class vertex degrees in the random regular frame graph. This frame will yield
a random tripartite graph. B, realization of the graph on 72 vertices. In this instance,
there are 1/8 × 72 = 9 green and red vertices and 3/4 × 72 = 54 blue vertices. Each
blue vertex connects to kCA = 1 red vertex and kCB = 2 green vertices. This is actually a
multigraph; with so few vertices, the probability that the configuration model algorithm
yields parallel edges is high.

are sampled as bipartite, biregular random graphs G(ni, nj, Dij, Dji).

Sampling from G(n, H) can be performed similar to the configuration model, where

each node is assigned as many half-edges as its degree, and these are wired together with

a random matching [Newman, 2010]. The detailed balance condition Eqn. (3.22) ensures

that this matching is possible. Practically, we often have to generate many candidate

matchings before the resulting graph is simple, but the probability of a simple graph is

bounded away from zero for fixed D.

An example of a random regular frame graph is the bipartite, biregular random graph.

The family G(n, m, d1, d2) is a random regular frame graph G(n + m, H), where the frame
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H is the directed path on two vertices: V = {1, 2} and E = {(1, 2), (2, 1)}. The weights

are taken as p1 = n/(n + m), p2 = m/(n + m), D12 = d1, and D21 = d2.

Another example random regular frame graph is shown in Figure 3.5. In this case, the

frame H has V = {A, B, C} and E = {(A, B), (A, C), (B, A), (B, C), (C, A), (C, B)} with

weights p and D as shown in Figure 3.5A. We see that this generates a random tripar-

tite graph with regular degrees between vertices in different independent sets, shown in

Figure 3.5B.

3.6.2 Markov and related matrices of frame graphs

Now, we define a number of matrices associated with the frame and the sample of the

random regular frame graph.

Let G be a simple graph. Define DG = diag(dG), the diagonal matrix of degrees in G.

The Markov matrix P = P(G) is defined as

P = D−1
G A,

where A = A(G) is the adjacency matrix. The Markov matrix is the row-normalized

adjacency matrix, and it contains the transition probabilities of a random walker on the

graph G. Let L = D−1/2
G A D−1/2

G be the normalized Laplacian. Then P and L have the

same eigenvalues, but L is symmetric, since Lij =
Aij√
didj

.

Suppose G ∼ G(n, H), where the frame H = (V, E, p, D). Another matrix that will be

useful is what we call the Markov matrix of the frame R, where Rij =
Dij

∑j Dij
. Thus, R is a row-

normalized D, in the same way that the Markov matrix P is the row-normalized adjacency

matrix A. Furthermore, R is invariant under any uniform scaling of the degrees. Because

of this equitable partition property of random regular frame graphs, eigenvectors of the

frame matrices D = D(H) or R = R(H) lift to eigenvectors of A = A(G) or P = P(G),

respectively. Suppose Dx = λx, then it is a straightforward exercise to check that Ax̃ = λx̃
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for the piecewise constant vector

x̃ =


1n1 x1

1n2 x2
...

 .

Using the same procedure, we can lift any eigenpair of R to an eigenpair of P with the

same eigenvalue.

Bounds on the eigenvalues of frame graphs in terms of blocks

The following result is due to Marina Meila (2015, personal correspondence).

Proposition 16. Let G be a random regular frame graph G(n, H), P its Markov matrix, and L

the Laplacian with vertices ordered by class in both cases. Let R be the Markov matrix of the frame

H = (V, E, p, D), with |V(H)| = K classes. Define the matrices L(kl) as the (k, l) block of L with

respect to the clustering of vertices by class. For l 6= k, let

M(kl) =

 0 L(kl)

L(kl) 0

 =

 0 L(kl)

L(lk)∗ 0

 .

For l = k, let M(kk) = L(kk). Assume that all eigenvalues of D are nonzero and pick a constant C

such that
|λ(kl)

2 |
λ
(kl)
1

≤ C < 1

for every k, l = 1, . . . K, where λ
(kl)
1 and λ

(kl)
2 are the leading and second eigenvalues of M(kl).

Under these conditions, the eigenvalues of P which are not eigenvalues of R are bounded by

C max
k=1,...,K

(
Rkk + ∑

l 6=k

√
RklRlk

)
≤ C

2

(
1 + max

k=1,...,K

K

∑
l=1

Rlk

)
.

The spectrum of the Markov matrix σ(P) enjoys a simple connection to σ(A) when A

is the adjacency matrix of a graph drawn from G(n, m, d1, d2). In this case, P = L = A√
d1d2

,

so the eigenvalues of P are just the scaled eigenvalues of A. This and the spectral gap for

bipartite, biregular random graphs, Corollary 4, lead to the following remark:
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Remark. For a random regular frame graph, M(kl) corresponds to the normalized Laplacian of a

bipartite biregular graph G(nk, nl, Dkl, Dlk). Thus,

|λ(kl)
2 |

λ
(kl)
1

≤
√

Dkl − 1 +
√

Dlk − 1√
DklDlk

+ ε.

Suppose we are given a frame that fits the conditions of Proposition 16; namely, D

cannot have any zero eigenvalues. Then we can uniformly grow the degrees, which leaves

R invariant, but allows us to reach an arbitrarily small C. This ensures that the leading K

eigenvalues of P are equal to the eigenvalues of R. Note that this actually means that the

entire random regular frame graph satifsfies a weak Ramanujan property. We now show

that this guarantees spectral clustering.

3.6.3 Spectral clustering

Spectral clustering is a popular method of community detection. Because some eigenvec-

tors of P, the Markov matrix of a random regular frame graph, are piecewise constant on

classes, we can use them to recover the communities so long as those eigenvectors can be

identified. Suppose there are K total classes in our random regular frame graph. Then,

given the eigenvectors x1, x2, . . . , xK, which are piecewise constant across classes, we can

cluster vertices by class. For each vertex v ∈ V(G), associate the vector yv ∈ RK where

yv
j = xj

v. Then if yv = yu for u, v ∈ V(G), vertices u and v belong to the same class1.

It is simple to recover these piecewise constant vectors x1, x2, . . . , xK when they are the

leading eigenvectors. These facts lead to the following theorem:

Theorem 17 (Spectral clustering guarantee in frame graphs). Let G be a random regular

frame graph G(n, H) and P its Markov matrix. Let R be the Markov matrix of the frame H =

(V, E, p, D), with |V(H)| = K classes and λ1 ≥ . . . ≥ λK the eigenvalues of R and |λK| > 0.

1 In the SBM case, the eigenvectors are not piecewise constant, but they are aligned with the eigenvectors
of R and thus highly correlated across vertices in the same class. A more flexible clustering method such
as K-means must be applied to the vectors y in that case.
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Then we can scale the degrees by some κ ∈N, D → κD, so that the vertex classes are recoverable

by spectral clustering of the leading K eigenvectors of P.

Remark. The conditions of Theorem 17, while very general, are also weaker than may be expected

using more sophisticated methods tailored to the specific frame model. We illustrate this with the

following example.

Example: The regular stochastic block model

Brito et al. [2016] and Barucca [2017] studied a regular stochastic block model, which can

be seen as a special case of our frame model. Let the frame H be the complete directed

graph on two vertices, including self loops, where

D =

 d1 d2

d2 d1


and p = (1/2, 1/2). Define the regular stochastic block model as G(2n, H). This is a graph

with two classes of equal size, representing two communities of vertices, with within-class

degree d1 and between-class degree d2. We assume d1 > d2, since communities are more

strongly connected within. Brito et al. proved the following theorem:

Theorem 18. If (d1 − d2)
2 > 4(d1 + d2 − 1), then there is an efficient algorithm for strong

recovery, i.e. recovery of the exact communities with high probability as n→ ∞.

Theorem 18 gives a sharp bound on the degrees for recovery, which we can compare

to our spectral clustering results. The eigenvalues of D are d1 + d2 and d1 − d2, and the

Markov matrix of the frame R has eigenvalues 1 and (d1 − d2)/(d1 + d2). The diagonal

blocks L(11) and L(22) each correspond to the Laplacian matrix of a d1-regular random

graph on n vertices, whereas the off-diagonal block term M(12) corresponds to the Lapla-

cian of a d2-regular bipartite graph on 2n vertices. Using our results and the previously

known results for regular random graphs [Friedman, 2003, 2004, Bordenave, 2015], we

can pick some C > 2
√

d2 − 1/d2 since d1 > d2 and we will eventually take the degrees to
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be large. Using Proposition 16, we find that the spurious eigenvalues of P come after the

leading 2 eigenvalues if
2
√

d2 − 1
d2

<
d1 − d2

d1 + d2
,

to leading order in the degrees. Rearranging, we obtain the condition

(d1 − d2)
2 > 4(d2 − 1)

(
d1 + d2

d2

)2

.

Assuming d2/d1 = β < 1 fixed, and taking the limit d1, d2 → ∞, we find that the Brito et

al. result becomes

d1 > 4
1 + β

(1− β)2 + o(1),

whereas our result becomes

d1 >
4
β

(
1 + β

1− β

)2

+ o(1),

illustrating that the spectral threshold is a factor of (1 + β)/β weaker.

3.7 Application: Low density parity check or expander codes

Another useful application of random graphs is as expanders, loosely defined as graphs

where the neighborhood of a small set of nodes is large. Expander codes, also called

low density parity check (LDPC) codes, were first introduced by Gallager in his PhD

thesis [Gallager, 1962]. These are a family of linear error correcting codes whose parity-

check matrix is encoded in an expander graph. The performance of such codes depends

on how good an expander that graph is, which in turn can be shown to depend on the

separation of eigenvalues. For a good introduction and overview of the subject, see the

book “Modern Coding Theory” by Richardson and Urbanke [2008].

Following Tanner [1981], we construct a code C from a (d1, d2)-regular bipartite graph

G on n + m vertices and two smaller linear codes C1 and C2 of length d1 and d2, respec-

tively. We write C1 = [d1, k1, δ1] and C2 = [d2, k2, δ2] with the usual convention of length,

dimension, and minimum distance. We assume the codes are all binary, using the finite
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field F2 the codeword is x ∈ C ⊂ F
|E|
2 where |E| = nd1 = md2. That is, we associate a bit

to each edge in the graph bipartite graph G. Let (ei(v))
dv
i=1 represent the set of edges inci-

dent to a vertex v in some arbitrary, fixed order. Then the vector x ∈ C if and only if the

vectors (xe1(u), xe2(u), . . . , xed1
(u))

T ∈ C1 for all u ∈ V1 and (xe1(v), xe2(v), . . . , xed2
(v))

T ∈ C2

for all v ∈ V2. The final code C is also linear. With this construction, the code C has rate at

least k1/d1 + k2/d2 − 1 [Tanner, 1981].

Furthermore, Janwa and Lal [2003] proved the following bound on the minimum dis-

tance of the resulting code:

Theorem 19. Suppose δ1 ≥ δ2 > η/2. Then the code C has minimum distance

δ ≥ n
d2

(
δ1δ2 −

η

2
(δ1 + δ2)

)
,

where η is the second largest eigenvalue of the adjacency matrix of G.

Corollary 20. Suppose the code C is constructed from a biregular, bipartite random graph G ∼

G(n, m, d1, d2) and the conditions of Theorem 19 hold. Then the minimum distance of C satisfies

δ ≥ n
d2

(
δ1δ2 −

√
d1 − 1 +

√
d2 − 1

2
(δ1 + δ2)− εn

)
.

We see that these Tanner codes will have maximal distance for smallest η, and used

our main result, Corollary 4, to obtain the explicit bound in Corollary 20. By growing

the graph, the above shows a way to construct arbitrarily large codes whose minimum

distance remains proportional to the code size nd1. That is, the relative distance δ/(nd1)

is bounded away from zero as n→ ∞. However, the above bound will only be useful if it

yields a positive result, which depends on the codes C1 and C2 as well as the degrees.

Remark. In general, the performance guarantees on LDPC codes that are obtainable from graph

eigenvalues are weaker than those that come from other methods. Although our method does

guarantee high distance for some high degree codes, analysis of specific decoding algorithms or

a probabilistic expander analyses yield better bounds that work for lower degrees [Richardson and

Urbanke, 2008].
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3.7.1 Example: An unbalanced code based on a (14, 9)-regular bipartite graph

We illustrate the applicability of our distance bound with an example. Let C1 = [14, 8, 7]

and C2 = [9, 4, 6]. These can be achieved by using a Reed-Salomon code on the common

field Fq for any q > 14 [Richardson and Urbanke, 2008]. We take q = 24 = 16 for inputs

that are actually binary, and this means each edge in the graph actually contains 4 bits

of information. Employing Corollary 20, the Tanner code C will have relative minimum

distance δ/(nd1) ≥ 0.0014 and rate at least 0.016. Taking n = 216 and m = 336 gives the

code a minimum distance of at least 4.

3.8 Application: Matrix completion

Assume we have some matrix Y ∈ Rn×m which has low “complexity.” Perhaps it is

low-rank or simple by some other measure. If we observe Yij for a limited set of entries

(i, j) ∈ E ⊂ [n]× [m], then matrix completion is any method which constructs a matrix Ŷ so

that ‖Ŷ− Y‖ is small, or even zero. Matrix completion has attracted significant attention

in recent years as a tractable algorithm for making recommendations to users of online

systems based on the tastes of other users (a.k.a. the Netflix problem). We can think of

it as the matrix version of compressed sensing [Candes and Plan, 2010, Candès and Tao,

2010].

Recently, a number of authors have studied the performance of matrix completion

algorithms where the index set E is the edge set of a regular random graph [Heiman et al.,

2014, Bhojanapalli and Jain, 2014, Gamarnik et al., 2017]. Heiman et al. [2014] describe a

deterministic method of matrix completion, where they can give performance guarantees

for a fixed observation set E over many input matrices Y. The error of their reconstruction

depends on the spectral gap of the graph. We expand upon the result of Heiman et al.

[2014], extending it to rectangular matrix and improving their bounds in the process.
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3.8.1 Matrix norms as measures of complexity and their relationships

We will employ a number of different matrix and vector norms in this Section. These

are all related by the properties of the underlying Banach spaces. The complexity of Y is

measured using a particular factorization norm:

γ2(Y) = min
UV∗=Y

‖U‖`2→`n
∞
‖V‖`2→`m

∞
.

The minimum is taken over all possible factorizations of Y = UV∗, and the norm ‖X‖`2→`n
∞
=

maxi

√
∑j X2

ij returns the largest `2 norm of a row. So, equivalently,

γ2(Y) = min
UV∗=Y

max
i,j
‖ui‖2 ‖vj‖2,

where ui and vi are the rows of U and V. See [Linial et al., 2007] for a number of results

about the norm γ2. In particular, note that

1√
nm
‖Y‖Tr ≤ γ2(Y) ≤ ‖Y‖Tr (3.23)

γ2(Y) ≤
√

rank(Y)‖Y‖∞, (3.24)

so we see that γ2 is related to two common complexity measures of matrices, the trace

norm (sum of singular values, i.e. the `m
2 → `n

2 nuclear norm) and rank [Candès and Tao,

2010]. Note also the well-known fact that

‖Y‖Tr = min
UV∗=Y

‖U‖F‖V‖F,

where ‖X‖F =
√

∑ij X2
ij is the Frobenius norm. We see that the trace norm constrains

factors U and F to be small on average via ‖ · ‖F, whereas the norm γ2 is similar but

constrains factors uniformly via ‖ · ‖`2→`n
∞

. However, we should note that computing

γ2(Y) is more costly than the trace norm, which can be performed with just the singular

value decomposition.
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3.8.2 Matrix completion generalization bounds

The method of matrix completion that we study, following Heiman et al. [2014], is to

return the matrix X which is the solution to:

minimize
X

γ2(X)

subject to Xij = Yij, (i, j) ∈ E.
(3.25)

Heiman et al. [2014] analyze the performance of the convex program (3.25) for a square

matrix Y using an expander argument, assuming that E is the edge set of a d-regular graph

with second eigenvalue η. They obtain the following theorem:

Theorem 21 (Heiman et al. [2014]). Let E be the set of edges of a d-regular graph with second

eigenvalue bound η. For every Y ∈ Rn×n, if Ŷ is the output of the optimization problem (3.25),

then
1
n2‖Ŷ−Y‖2

F ≤ cγ2(Y)2 η

d
,

where c = 8KG ≤ 14.3 is a universal constant and ‖ · ‖F is the Frobenius norm.

Considering rectangular matrices, we find a more general theorem which reduces to

Theorem 21 if n = m and d1 = d2 = d, but improved by a factor of two:

Theorem 22. Let E be the set of edges of a (d1, d2)-regular graph with second eigenvalue bound

η. For every Y ∈ Rn×m, if Ŷ is the output of the optimization problem (3.25), then

1
nm
‖Ŷ−Y‖2

F ≤ cγ2(Y)2 η√
d1d2

,

where c = 4KG ≤ 7.13.

Proof. We start by considering a rank-1 sign matrix S = uv∗, where u, v ∈ {−1, 1}n×m. Let

S′ = 1
2(S + J), where J is the all-ones matrix, so that S′ has the entries of -1 in S replaced

by zeros. Then S′ = 1A1∗B + 1Ac1∗Bc for subsets A ⊂ V1 = [n] and B ⊂ V2 = [m], where
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A = {i : ui = 1} and B = {j : vj = 1}. Consider the expression∣∣∣∣∣∣ 1
nm ∑

i,j
sij −

1
|E| ∑

(i,j)∈E
sij

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1
nm ∑

i,j
(2s′ij − 1)− 1

|E| ∑
(i,j)∈E

(2s′ij − 1)

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣ 1
nm ∑

i,j
s′ij −

1
|E| ∑

(i,j)∈E
s′ij

∣∣∣∣∣∣
= 2

∣∣∣∣ |A||B|+ |Ac||Bc|
nm

− E(A, B) + E(Ac, Bc)

|E|

∣∣∣∣
≤ 2

∣∣∣∣ |A||B|nm
− E(A, B)

|E|

∣∣∣∣+ 2
∣∣∣∣ |Ac||Bc|

nm
− E(Ac, Bc)

|E|

∣∣∣∣ .

The following is a bipartite version of the expander mixing lemma [De Winter et al., 2012]:∣∣∣∣E(A, B)
|E| − |A||B|

nm

∣∣∣∣ ≤ η√
d1d2

√
|A||B|

nm

(
1− |A|

n

)(
1− |B|

m

)
=

η√
d1d2

√
|A||B||Ac||Bc|

(nm)2 .

We find that ∣∣∣∣∣∣ 1
nm ∑

i,j
sij −

1
|E| ∑

(i,j)∈E
sij

∣∣∣∣∣∣ ≤ 4η√
d1d2

√
|A||B||Ac||Bc|

(nm)2

=
4η√
d1d2

√
xy(1− x)(1− y)

≤ η√
d1d2

,

since xy(1− x)(1− y) attains a maximal value of 2−4 for 0 ≤ x, y ≤ 1. This improves on

Theorem 21 by a factor of 2, because the version of the expander mixing lemma we used

allowed us to combine both terms without approximation.

The rest of the proof develops identical to the results of Heiman et al. [2014], which we

include for completion. Next, we apply the result to rank-1 sign matrices to any matrix R.

Let R = ∑i αiSi, where Si is a rank-1 sign matrix and αi ∈ R. For a general matrix R, this

might require many rank-1 sign matrices. Define the sign nuclear norm ν(R) = ∑i |αi|.

Then, ∣∣∣∣∣∣ 1
nm ∑

i,j
rij −

1
|E| ∑

(i,j)∈E
rij

∣∣∣∣∣∣ ≤ ν(R)
η√
d1d2

.
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It is a consequence of Grothendieck’s inequality, a well-known theorem in functional anal-

ysis, that there exists a universal constant 1.5 ≤ KG ≤ 1.8 so that γ2(X) ≤ ν(X) ≤

KGγ2(X) for any real matrix X [Heiman et al., 2014].

Now, let the matrix of residuals R = (Ŷ − Y) ◦ (Ŷ − Y), where ◦ is the Hadamard

entry-wise product of two matrices, so that Rij = (Ŷij −Yij)
2. Since

1
|E| ∑

(i,j)∈E
rij = 0,

we conclude that
1

nm ∑
i,j

rij ≤ ν(R)
η√
d1d2

≤ KGγ2(R)
η√
d1d2

.

Furthermore, γ2(R) ≤ γ2(Ŷ − Y)2 ≤ (γ2(Ŷ) + γ2(Y))2. Since Ŷ is the output of the

algorithm and Y is a feasible solution, γ2(Ŷ) ≤ γ2(Y). Thus, γ2(R) ≤ 4γ2(Y)2 and the

proof is finished.

Remark. If we minimize the trace norm of the solution, which is a more practical method than

working with γ2, the same bounds hold in terms of ‖Y‖Tr. This is because γ2(Y) ≤ ‖Y‖Tr. We

only need to modify the final part of the proof.

3.8.3 Noisy matrix completion bounds

Furthermore, our analysis easily extends to the case where the matrix we observe is cor-

rupted with noise. As mentioned in the above remark, similar results will hold for the

trace norm. In the noisy case, we solve the problem

minimize
X

γ2(X)

subject to
1
|E| ∑

(i,j)∈E
(Xij − Zij)

2 ≤ δ2
(3.26)

and obtain the following theorem:

Theorem 23. Suppose we observe Zij = Yij + εij with bounded error

1
|E| ∑

(i,j)∈E
ε2

ij ≤ δ2.
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Then solving the optimization problem (3.26) will yield a bound of

1
nm
‖Ŷ−Y‖2

F ≤ cγ2(Y)2 η√
d1d2

+ 4δ2,

where c = 4KG ≤ 7.13.

Proof. Denote Ŷ the solution to P3.26. It will be useful to introduce the sampling operator

PE : Rn×m → Rn×m, where (PE(X))ij = Xij if (i, j) ∈ E and 0 otherwise. Following

Heiman et al. [2014], let R = (Ŷ−Y) ◦ (Ŷ−Y) be the matrix of squared errors, then

∣∣∣∣ 1
nm
‖Ŷ−Y‖2

F −
1
|E| ‖PE(Ŷ−Y)‖2

F

∣∣∣∣ =
∣∣∣∣∣∣ 1
nm ∑

i,j
(Ŷij −Yij)

2 − 1
|E| ∑

(i,j)∈E
(Ŷij −Yij)

2

∣∣∣∣∣∣
≤ KGγ2(R)

η√
d1d2

.

However, since Y is a feasible solution to P3.26, we have

γ2(Ŷ) ≤ γ2(Y),

so that

γ2(R) ≤
(
γ2(Ŷ−Y)

)2 ≤
(
γ2(Ŷ) + γ2(Y)

)2 ≤ 4γ2(Y)2.

By the triangle inequality

‖PE(Ŷ−Y)‖F ≤ ‖PE(Ŷ− Z)‖F + ‖PE(Z−Y)‖F ≤ 2δ
√
|E|

using the bounds on the distance of the solution to the data and on the noise. Because

1
nm
‖Ŷ−Y‖2

F ≤
∣∣∣∣ 1
nm
‖Ŷ−Y‖2

F −
1
|E| ‖PE(Ŷ−Y)‖2

F

∣∣∣∣+ 1
|E| ‖PE(Ŷ−Y)‖2

F

we get the final bound

1
nm
‖Ŷ−Y‖2

F ≤ 4KGγ2(Y)2 η√
d1d2

+ 4δ2.
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3.8.4 Application of the spectral gap

Theorem 22 provides a bound on the mean squared error of the approximation X. Directly

applying Corollary 4, we obtain the following bound on the generalization error of the

algorithm using a random biregular, bipartite graph:

Corollary 24. Let E be sampled from a G(n, m, d1, d2) random graph. For every Y ∈ Rn×m, if Ŷ

is the output of the optimization problem (3.25), then

1
nm
‖Ŷ−Y‖2

F ≤ cγ2(Y)2
√

d1 − 1 +
√

d2 − 1 + εn√
d1d2

,

where c = 4KG ≤ 7.13 is a universal constant.
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tite biregular graphs. Random Structures & Algorithms, 48(2):313–340, March 2016. ISSN
1098-2418. doi: 10.1002/rsa.20581.



91

Keqin Feng and Wen-Ch’ing Winnie Li. Spectra of Hypergraphs and Applications. Journal
of Number Theory, 60(1):1–22, September 1996. ISSN 0022-314X. doi: 10.1006/jnth.1996.
0109.

Santo Fortunato. Community detection in graphs. Physics Reports, 486(3–5):75–174, Febru-
ary 2010. ISSN 0370-1573. doi: 10.1016/j.physrep.2009.11.002.

Joel Friedman. A Proof of Alon’s Second Eigenvalue Conjecture. In Proceedings of the
Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pages 720–724,
New York, NY, USA, 2003. ACM. ISBN 978-1-58113-674-6. doi: 10.1145/780542.780646.

Joel Friedman. A proof of Alon’s second eigenvalue conjecture and related problems.
arXiv:cs/0405020, May 2004.

R. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory, 8(1):
21–28, January 1962. ISSN 0096-1000. doi: 10.1109/TIT.1962.1057683.

David Gamarnik, Quan Li, and Hongyi Zhang. Matrix Completion from $O(n)$ Samples
in Linear Time. arXiv:1702.02267 [cs, math, stat], February 2017.

C. D. Godsil and B. Mohar. Walk generating functions and spectral measures of infinite
graphs. Linear Algebra and its Applications, 107(Supplement C):191–206, August 1988.
ISSN 0024-3795. doi: 10.1016/0024-3795(88)90245-5.

Eyal Heiman, Gideon Schechtman, and Adi Shraibman. Deterministic algorithms for
matrix completion. Random Structures & Algorithms, 45(2):306–317, September 2014.
ISSN 1098-2418. doi: 10.1002/rsa.20483.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic block-
models: First steps. Social Networks, 5(2):109–137, June 1983. ISSN 0378-8733. doi:
10.1016/0378-8733(83)90021-7.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applica-
tions. Bulletin of the American Mathematical Society, 43(4):439–561, 2006. ISSN 0273-0979,
1088-9485. doi: 10.1090/S0273-0979-06-01126-8.

H. Janwa and A. K. Lal. On Tanner Codes: Minimum Distance and Decoding. Applica-
ble Algebra in Engineering, Communication and Computing, 13(5):335–347, February 2003.
ISSN 0938-1279, 1432-0622. doi: 10.1007/s00200-003-0098-4.

Motoko Kotani and Toshikazu Sunada. Zeta Functions of Finite Graphs. Journal of mathe-
matical sciences, the University of Tokyo, 7(1):7–25, 2000. ISSN 13405705.
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INTERLUDE

The previous Chapter presents a model for a random graph with two communities,

each of the bipartite sets. The results we develop for the two community case are then

extended to state when community detection is possible with an arbitrary number of

groups, along with applications in channel coding and machine learning.

We next consider a random graph model of the respiratory network. To model neu-

ral dynamics, we introduce a set of biophysical equations for the membrane potentials

and channel openings of the various neurons, as well as synaptic currents. We study

the effect of changing network connectivity on the resulting oscillatory dynamics. We

show how splitting the network into two communities segmesnts the oscillations into two

phases, one for each sub-network, which are pushed apart by inhibition. We accompany

the model with experiments performed with slices taken from the brainstem respiratory

areas. Similarities and differences between the real neural recordings and model simula-

tions lead to new hypotheses that increase our understanding of how the brain generates

this important rhythm.
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Chapter 4

DIFFERENT ROLES FOR INHIBITION IN THE
RHYTHM-GENERATING RESPIRATORY NETWORK

Kameron Decker Harris, Tatiana Dashevskiy, Joshua Mendoza, Alfredo J. Garcia III,
Jan-Marino Ramirez, and Eric Shea-Brown.

Journal of Neurophysiology 118(4), 2070-2088. 2017.

Abstract

Unraveling the interplay of excitation and inhibition within rhythm-
generating networks remains a fundamental issue in neuroscience. We use
a biophysical model to investigate the different roles of local and long-range
inhibition in the respiratory network, a key component of which is the pre-
Bötzinger complex inspiratory microcircuit. Increasing inhibition within
the microcircuit results in a limited number of out-of-phase neurons before
rhythmicity and synchrony degenerate. Thus, unstructured local inhibition
is destabilizing and cannot support the generation of more than one rhythm.
A two-phase rhythm requires restructuring the network into two microcir-
cuits coupled by long-range inhibition in the manner of a half-center. In this
context, inhibition leads to greater stability of the two out-of-phase rhythms.
We support our computational results with in vitro recordings from mouse
pre-Bötzinger complex. Partial excitation block leads to increased rhythmic
variability, but this recovers following blockade of inhibition. Our results
support the idea that local inhibition in the pre-Bötzinger complex is present
to allow for descending control of synchrony or robustness to adverse condi-
tions like hypoxia. We conclude that the balance of inhibition and excitation
determines the stability of rhythmogenesis, but with opposite roles within
and between areas. These different inhibitory roles may apply to a variety
of rhythmic behaviors that emerge in widespread pattern generating circuits
of the nervous system.
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4.1 Introduction

Rhythmic activity is critical for the generation of behaviors such as locomotion and res-

piration, as well as apparently non-rhythmic behaviors including olfaction, information

processing, encoding, learning and memory [Marder and Bucher, 2001, Buzsaki, 2006,

Kopell et al., 2010, Ainsworth et al., 2012, Skinner, 2012, Missaghi et al., 2016]. These

rhythms arise from central pattern generators (CPGs), neuronal networks located within

the central nervous system that are capable of generating periodic behavior due to their

synaptic and intrinsic membrane properties [Marder and Bucher, 2001, Grillner, 2006,

Grillner and Jessell, 2009, Kiehn, 2011].

An increasingly important concept is that a given behavior may involve the interaction

between several rhythmogenic microcircuits [Anderson et al., 2016, Ramirez et al., 2016].

In the neocortex, multiple rhythms and mechanisms are involved in a variety of cortical

processes [Buzsaki, 2006]. In breathing, which consists of the three dominant respiratory

phases—inspiration, post-inspiration, and expiration—each phase seems to be generated

by its own autonomous, excitatory microcircuit, sub-populations of the overall network

which act as rhythm-generating modules [Anderson et al., 2016, Lindsey et al., 2012]. The

timing between these excitatory microcircuits is established by inhibitory interactions.

In locomotion, each side of the spinal cord contains rhythmogenic microcircuits that are

similarly coordinated by inhibitory mechanisms in order to establish left-right alternation

[e.g. Kiehn, 2011]. Assembling a behavior by combining different microcircuits may im-

bue a network with increased flexibility. This strategy could also facilitate the integration

and synchronization of one rhythmic behavior with another. Sniffing, olfaction, whisking,

and rhythmic activities in hippocampus and locus coeruleus are all rhythmically coupled

to the inspiratory rhythm generated in the pre-Bötzinger complex (preBötC) [Sara, 2009,

Moore et al., 2013, Ferguson et al., 2015, Ramirez et al., 2016, Huh et al., 2016]. This small

microcircuit, located in the ventrolateral medulla, is the essential locus for the generation

of breathing [Smith et al., 1991, Tan et al., 2008, Gray et al., 2001, Schwarzacher et al., 2011,
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Ramirez et al., 1998].

First discovered a quarter of a century ago, the preBötC is among the best understood

microcircuits [Smith et al., 1991]. It continues to generate fictive respiratory rhythm ac-

tivity when isolated in vitro, reliant on excitatory neurotransmission. Rhythmicity in the

preBötC ceases when glutamatergic synaptic mechanisms are blocked, while it persists

following the blockade of synaptic inhibition. However, almost 50% of the preBötC neu-

rons are inhibitory [Shao and Feldman, 1997, Winter et al., 2009, Morgado-Valle et al.,

2010, Hayes et al., 2012]. Despite the abundance of inhibitory neurons, the majority of

neurons in the preBötC are rhythmically active in phase with inspiration. A small group

of approximately 9% of neurons in the preBötC are inhibited during inspiration and dis-

charge in phase with expiration [Morgado-Valle et al., 2010, Nieto-Posadas et al., 2014,

Carroll et al., 2013]. A recent optogenetic study by Sherman et al. [2015] showed that

stimulation of glycinergic inhibitory preBötC neurons can delay or halt a breath, and in-

hibition of those neurons can increase the magnitude of a breath. This is consistent with

pharmacological agonist-antagonist experiments by Janczewski et al. [2013] which found

that inhibition can modulate rhythm frequency or trigger apnea but is not essential for

rhythm generation. The inhibitory population may thus be an “actuator” that allows de-

scending pathways to control respiration. However, with only a few studies available,

the role of these inhibitory preBötC neurons is not well-understood.

These experimental findings raise important questions: What is the role of inhibitory

neurons within this microcircuit [Cui et al., 2016]? Why does the preBötC generate pri-

marily one rhythmic phase despite the presence of numerous inhibitory neurons? Our

modeling study arrives at the conclusion that this microcircuit can only generate one

rhythmic phase. Synaptic inhibition seems to primarily serve to titrate the strength of

this single rhythm while creating a small number of apparently anomalous expiratory

cells. In order to generate more than one phase, it is necessary to assemble a network

where excitatory microcircuits are segmented, via inhibition, into different compartments.

Mutually-inhibitory circuits have been proposed for the inspiration–active expiration net-
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work [Smith et al., 2013, Molkov et al., 2013, Koizumi et al., 2013, Onimaru et al., 2015]

and preBötC–post-inspiratory complex (PiCo) networks [Anderson et al., 2016].

The novelty of our theoretical study lies in two conceptually important findings: A sin-

gle microcircuit is unable to generate more than one phase based on the currently known

network structure, and the generation of different phases necessitates the inhibitory in-

teraction between excitatory microcircuits. Based on these findings we propose that the

generation of rhythm and phase arise from separate network-driven processes. In these

two processes, inhibition plays fundamentally different roles: local inhibition promotes

desynchronization within a microcircuit, while long-range inhibition establishes phase

relationships between microcircuits. Consistent with our proposal is the observation that

breathing does not depend on the presence of all three phases at any given time. In

gasping and some reduced preparations, the respiratory network generates a one-phase

rhythm consisting of inspiration only. Under resting conditions, breathing primarily os-

cillates between inspiration and post-inspiration. This eupneic rhythm also involves a

late expiratory phase according to Richter and Smith [2014]. Under high metabolic de-

mand or coughing, another phase is recruited in form of active expiration. This modular

organization may be a fundamental property of rhythm generating networks.

4.2 Materials and Methods

4.2.1 preBötC network simulations

We model the preBötC network as a simple directed Erdős-Rényi random graph on N =

300 nodes, where edges are added at random with fixed probability. We denote a directed

edge from node j to node i as j → i. The connection probability p = (kavg/2)/(N − 1)

so that the expected total degree, that is the in-degree plus the out-degree, of a node is

kavg, which we vary. We prefer to parametrize these networks by degree kavg rather than

p, since in this case our results do not depend on N once it is large [Bollobás, 1998].

Each node is of type bursting (B), tonic spiking (TS), or quiescent (Q) with correspond-
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ing probabilities 25%, 45%, and 30% [Peña et al., 2004, Del Negro et al., 2005]. Neurons are

inhibitory with probability pI , another parameter, and all projections from an inhibitory

neuron are inhibitory. The sets of excitatory and inhibitory nodes are denoted NE and

NI . Edges are assigned a maximal conductivity gE for excitatory connections and gI for

inhibitory connections. In our parameter sweeps, we vary these conductivities over the

range 2–5 nS. This matches the postsynaptic potential deflections observed in experiments

(typical IPSPs: -1.2 to -1.8 mV, EPSPs: 1.6 to 2.3 mV; data from Aguan Wei).

We use “model 1” from Butera et al. [1999a] as the dynamical equations for burst-

ing, tonic spiking, and quiescent neurons. All parameters, given in Table 4.1, are shared

among the dynamical types with the exception of the leak conductance gL which is ad-

justed for the desired dynamics (B, TS, Q). Parameter values besides gL are taken from

Park and Rubin [2013], most of which are the same or close to the original values chosen

by Butera et al. [1999a]. With the chosen parameters, the bursting neurons fire 6-spike

bursts every 2.4 s, and the tonic spikers fire 3.5 spikes per second.

The full system of equations is

V̇ = −
(

IL + INa + IK + INa,p + Isyn − Iapp
)

/C

ḣ = (h∞(V)− h) /τh(V)

ṅ = (n∞(V)− n) /τn(V)

(4.1)

with currents calculated as

IL = gL(V − EL)

INa = gNam3
∞(V)(1− n)(V − ENa)

IK = gKn4(V − EK)

INa,p = gNa,pmp,∞(V)h(V − ENa),

and the activation and time constants are

x∞(V) =
1

1 + exp ((V − θx)/σx)

τx(V) =
τ̄x

cosh ((V − θx)/(2σx))
.
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Parameter Value

C 21 pF

ENa 50 mV

EK -85 mV

EL -58 mV

θm -34 mV

θn -29 mV

θm,p -40 mV

θh -48 mV

σm -5 mV

σn -4 mV

σm,p -6 mV

σh 5 mV

τ̄n 10 ms

τ̄h 10,000 ms

gK 11.2 nS

gNa 28 nS

gNa,p 1 nS

Iapp 0 pA

g(B)L 1.0 nS

g(TS)
L 0.8 nS

g(Q)
L 1.285 nS

Esyn,E 0 mV

Esyn,I -70 mV

θsyn 0 mV

σsyn -3 mV

τ̄syn 15 ms

Table 4.1: Parameters for the network model are
taken from the literature [Butera et al., 1999a,
Park and Rubin, 2013]. We modify gL for qui-
escent (Q), tonic spiking (TS), and intrinsically
bursting (B) cells. The system of equations is sim-
ulated in the given units, so that no conversions
are necessary. Those parameters below the lower
horizontal break are for the synaptic dynamics.
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To model network interactions, we model synaptic dynamics with first-order kinetics

[Destexhe et al., 1994]. The synaptic current neuron i receives is

Isyn,i = ∑
j∈NE :j→i

gEsij
(
Vi − Esyn,E

)
+ ∑

j∈NI :j→i
gIsij

(
Vi − Esyn,I

)
,

where gE and gI are the maximal excitatory and inhibitory synapse conductances. The

reversal potentials Esyn,E and Esyn,I for excitatory and inhibitory synapses, shown in Ta-

ble 4.1, correspond the appropriate values for glutamatergic and glycinergic or GABAer-

gic synapses. The variables sij represent the open fraction of channels between cells j and

i, and they are governed by the differential equations

ṡij =
(
(1− sij)m

(ij)
∞ (Vj)− sij

)
/τsyn

m(ij)
∞ (Vj) =

1
1 + exp

(
(Vj − θsyn)/σsyn

) .

Excitatory and inhibitory synapses share the parameters τ̄syn, θsyn, and σsyn (Table 4.1).

Each model run starts from random initial conditions and lasts 100 s of simulation

time with 1 ms time resolution. The first 20 s of transient dynamics are removed before

postprocessing. Rather than save all state variables during long runs, we record a binary

variable for each neuron that indicates whether or not the neuron fires a spike in the

given time step. A spike is registered when V surpasses -15 mV for the first time in the

previous 6 ms. This spike raster is then stored as a sparse matrix. The simulation code is

configurable to output voltage traces or all state variables; these were examined during

development to check that the model and spike detection function correctly.

We examine the effects of network connectivity, inhibition, and synaptic strength on

the dynamics of our model by varying kavg, pI , gE, and gI . To capture the interactions

of these parameters, we sweep through all combinations of parameters in the ranges

kavg = 1.0, 1.5, . . . , 12.0; pI = 0.00, 0.05, . . . , 1.00; gE = 2, 3, . . . , 5 nS; and gI = 2, 3, . . . , 5

nS, with 8 repetitions of each combination. The only randomness in the model is random-

ness present in the graphs and initial conditions, since the dynamics are deterministic.

This amounts to 61,824 graph generation, simulation, and postprocessing steps. Network
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generation, simulations, and postprocessing were performed with custom code avail-

able from the first author at http://github.com/kharris/prebotc-graph-model. The

code was written in Python and C++, and some analysis was performed with MAT-

LAB. Numerical integration used backwards differentiation formulae in VODE called via

scipy.integrate.ode, suitable for stiff equation systems. We experimented with the tol-

erance to be sure it resolves all timescales. We used the Hyak cluster at the University of

Washington to conduct parameter sweeps. Each simulated 100 s took less than 3 hours

and could be performed on a standard consumer machine.

4.2.2 Two population network model

The preBötC is thought to be connected to another microcircuit, alternately the BötC,

PiCo, and lateral parafacial group, in a mutually inhibitory manner [Smith et al., 2013,

Molkov et al., 2013, Huckstepp et al., 2016, Anderson et al., 2016] which allows them

to generate stable two-phase rhythms as in a half-center oscillator [Marder and Bucher,

2001]. We study this case with a two microcircuit model, a where each microcircuit is

represented by a different population of cells (Pop. 1 and Pop. 2); we arbitrarily refer to

the preBötC as Pop. 1.

We use a two group stochastic block model for the network. The stochastic block

model [Holland et al., 1983] is a generalization of the directed Erdős-Rényi random graph,

where the connection probability varies depending on the population label of each neu-

ron. Each population has recurrent connections from excitatory to all other cells, with

each connection occurring with a fixed probability. As we describe below, we vary prob-

abilities of connections from inhibitory neurons to other neurons in the same population

(intra-group) and in the other population (inter-group).

Let N1 be the number of neurons in Pop. 1 and N2 be the number of neurons in Pop.

2. We assume N1 = N2 = 300, so the network has a total of 600 neurons. To generate

this network we begin by assigning each neuron to one of the two populations. We then

http://github.com/kharris/prebotc-graph-model
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assign each neuron a type: quiescent, tonic or bursting, using the same method as the

single population model. Afterwards, we randomly assign neurons to be inhibitory with

probability pI = 0.5 [Shao and Feldman, 1997, Winter et al., 2009, Hayes et al., 2012,

Morgado-Valle et al., 2010]; otherwise they are excitatory. We then assign connections to

the neurons with probabilities:

P(I) =

 kintra
N1−1

kinter
N2

kinter
N1

kintra
N2−1

 , P(E) =

 3
N1−1 0

0 3
N2−1

 ,

where 0 ≤ kintra, kinter ≤ 4. The matrix entries (i, j) are the probability of a connection

between an inhibitory or excitatory neuron in population i to a neuron in population j.

This model allows us to tune between a half-center network containing only inter-group

inhibition and a network with equal amounts of both intra- and inter-group inhibition.

The matrix P(E) contains the probability of connection for a projecting excitatory neu-

ron. It is diagonal, reflecting the assumption that excitatory neurons only project within

the local population, and each excitatory neuron has an average out-degree of 3. The

matrix P(I) describes the probability of connection for inhibitory projecting neurons. The

variable kintra is the expected number of projections per inhibitory neuron to other neu-

rons within its own population, and kinter is the expected number of projections from

an inhibitory neuron to neurons in the other population. We normalize these values in

the matrix to ensure that the average in-degree is the sum of the columns and and out-

degree is the sum of the rows, both equal to kintra + kinter + 3. The total inhibitory degrees

then depend on the values of kintra and kinter, which affect only the inhibitory connection

probabilities. Unless explicitly stated, connections are assigned a fixed conductance of

gE = gI = 2.5 nS for excitatory and inhibitory connections.

We examine the effects of inhibition both within a population and between popula-

tions. To do this, we sweep through the parameters kintra, kinter = 0.0, 0.5, . . . , 4.0 and

simulate 8 realizations (i.e., samples from the distribution of random graphs with these

parameters) for each parameter pair. This leads to 648 graph generation, simulation,
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and post processing steps. As for the single population model, all code is available at

http://github.com/kharris/prebotc-graph-model .

4.2.3 Slice experiments

Brainstem transverse slices were prepared from CD1 mice (P7–12). All experiments were

performed with the approval of the Institute of Animal Care and Use Committee of the

Seattle Children’s Research Institute. Mice were maintained with rodent diet and water

available ad libitum in a vivarium with a 12 h light/dark cycle at 22◦C. Thickness of slices

containing the preBötC varied between 550-650 µm. Slices were placed into the recording

chamber with circulating artificial cerebrospinal fluid (aCSF) containing NaCl 118 mM,

KCl 3 mM, CaCl2 1.5 mM, MgCl 1 mM, NaHCO3 25 mM, NaH2PO4 1 mM, d-glucose 30

mM and equilibrated with 95% O2 and 5% CO2, pH 7.4. We maintained the temperature

of the bath at 31◦C, with an aCSF circulation rate of 15 mL/min. Rhythmic activity of

preBötC was induced by slow up-regulation of KCl concentration from 3 mM to 8 mM in

aCSF. The details of the technique are described in Ramirez et al. [1997a] and Anderson

et al. [2016].

We recorded extracellular neuronal population activity in the preBötC region with a

protocol that first measured the control activity, then activity following application of a

partial excitation block, and finally with an additional complete block of inhibition. We

used 700 nM DNQX disodium salt, a selective non-NMDA receptor antagonist which

blocks glutamatergic ion channels generating fast excitatory synaptic inputs, to effect

the partial excitation block. Picrotoxin (PTX), an ionotropic GABAA receptor antagonist

blocking inhibitory chloride-selective channels, was used at 20 or 50 µM to shut down in-

hibition. Both concentrations of PTX were equally effective at blocking inhibition. DNQX

disodium salt and PTX were obtained from Sigma-Aldrich, St. Louis, MO. After applica-

tion of either drug, we waited 5 min for the drugs to take effect and used at least 10 min

of data to measure the resulting rhythm.

http://github.com/kharris/prebotc-graph-model
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In additional experiments, we supplemented the extracellular population-level data

with multi-electrode recordings in the contralateral preBötC. Extracellular neural activ-

ity from the transverse medullary slice was recorded on a 16 channel commercial linear

multi-array electrode (model: Brain Slice Probe, Plexon, Dallas, TX). Each electrode had a

recording surface of 15 microns and interelectrode spacing was fixed at 50 microns. Neu-

ral signals were amplified and recorded using the Omni-Plex D system (Plexon). Wide-

band data was filtered with a Butterworth lowpass filter, 200 Hz cutoff, and spike sorting

was performed offline and post-hoc using Offline Sorter v4.1.0 (Plexon). Specifically, in-

dividual unit waveforms were detected and sorted using principle component analysis,

visualized in a three-dimensional cluster view. Waveforms were detected and sorted us-

ing Offline Sorter with manual cluster cutting single electrode-based feature spaces. Care

was taken to follow nonstationarities in waveform shapes in assigning spikes to separate

units, and auto- and cross-correlation histograms were examined as a check on sorting

results [Lewicki, 1998]. All neurons with good isolation were kept for analysis.

We kept only those slices that initially showed robust rhythms, as determined by the

experimentalist. We performed a total of 5 multi-electrode experiments and discarded

one in which the rhythm went away after application of DNQX and never recovered.

We recorded extracellularly from 15 slices and excluded 2 outliers from statistical anal-

ysis, because their rhythms slowed considerably more than the others with DNQX. In

vitro slice data were analyzed by hand using Axon pClamp (Molecular Devices, Sun-

nyvale, CA) to extract burst locations and amplitudes, which were exported to a table

for analysis using custom Python programs available at http://github.com/kharris/

prebotc-graph-model.

4.2.4 Postprocessing

Because of the large number of simulations needed to explore the parameter space, we

can examine only a small fraction of the simulations by eye and must rely on summary

http://github.com/kharris/prebotc-graph-model
http://github.com/kharris/prebotc-graph-model
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statistics to characterize the dynamics.

Binning and filtering

First, the spike raster data is aggregated into 50 ms bins of spike counts to compress

the size of the matrix. We denote the spike raster vector timeseries xbin(t). The unbinned

spike rasters are then convolved with a Gaussian kernel k(t) =
(

σ
√

2π
)−1

exp
(
−1

2 t2/σ2
)

,

where σ = 60 ms, to produce the continuous timeseries xfilt(t) = (k ∗ x)(t), which is then

downsampled to the same time bins. To characterize the overall population output, we

compute what we call the integrated trace xint(t). This is defined as the lowpass-filtered

population average, where the population average x̄(t) = 1
N ∑N

i=1 xi(t). We use a second-

order Butterworth filter with cutoff frequency 4 Hz. The integrated trace is normalized to

have units of spikes per second per neuron.

Synchrony statistic

Our principle aim is to quantify how different networks give rise to varying degrees of

synchrony across the population of bursting neurons. We choose to characterize the over-

all synchrony of the population with one statistic [Golomb, 2007, Masuda and Aihara,

2004]

χ =

(
〈x̄filt(t)2〉t − 〈x̄filt(t)〉2t

1
N ∑N

i=1
[
〈xfilt

i (t)2〉t − 〈xfilt
i (t)〉2t

])1/2

(4.2)

where the angle brackets 〈·〉t denote averaging over the timeseries and x̄filt(t) = 1
N ∑N

i=1 xfilt
i (t).

The value of χ is between 0 and 1. With perfect synchrony, xfilt
i (t) = x̄filt(t) for all i, then

we will find χ = 1. With uncorrelated signals xfilt
i (t), then χ = 0. Examples of network

activity for different values of χ are shown in Fig. 4.1.
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Burst detection and phase analysis

The respiratory rhythm is generated by synchronized bursts of activity in the preBötC.

In order to identify these bursts in the integrated traces, we needed a method of peak-

detection that identifies large bursts but ignores smaller fluctuations. To do this we iden-

tify times t∗ in the integrated timeseries xint(t), where xint(t∗) is an absolute maxima over

a window of size 600 ms (12 time bins to either side of the identified maximum), and its

value is above the 75th percentile of the full integrated timeseries. This ensures that the

detected bursts are large-amplitude, reliable maxima of the timeseries.

Using the detected burst peak times t∗1 , t∗2 , . . . , t∗nbursts
, we can examine the activity of

individual neurons triggered on those events, the burst triggered average (BTA). The

time between consecutive bursts is irregular, so in order to compute averages over many

events, we rescale time into a uniform phase variable φ ∈ [−π, π]. A phase φ = 0 hap-

pens at the population burst, while φ = −π ≡ π (mod 2π) occurs in-between bursts. To

define this phase variable, we rescale the half-interval
[
(t∗n − t∗n−1)/2, t∗n

]
preceding burst

n to [−π, 0]. Similarly, we rescale the other half-interval
[
t∗n, (t∗n+1 − t∗n)/2

]
which follows

burst n to [0, π]. Each rescaling is done using linear interpolation of the binned spike

rasters. Let Φ(t) denote the mapping from time t to the phase. Then the BTA activity of

neuron i is

xBTA
i (φ) =

1
nbursts

nbursts

∑
j=1

∫ (t∗j+1−t∗j )/2

−(t∗j−t∗j−1)/2
xfilt

i

(
t∗j + t

)
δ
(

Φ
(

t∗j + t
)
− φ

)
dt, (4.3)

where δ(·) is the Dirac delta measure which ensures that xfilt
i is sampled at the correct

phase.

The BTAs exhibit two characteristic shapes. The first shape is peaked at a particular

value of φ; these neurons are phasic bursters. Of course, most phasic bursters take part

in the overall population rhythm and have their BTA maximum near zero. Cells that are

in-phase with the population rhythm are inspiratory. However, there are some bursters

with a BTA peak near π, and we call these out-of-phase cells expiratory. The second shape

is weakly peaked or flat; these neurons are tonic.
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We define a complex-valued phase-locking variable zi as the circular average of the BTA

normalized by its integral:

zi =

∫ π
−π xBTA

i (φ)eiφdφ∫ π
−π xBTA

i (φ)dφ
. (4.4)

Normalization allows us to compare cells with different firing rates. The magnitude of

phase-locking (peakedness of xBTA
i ) is quantified by the magnitude |zi|. We use the argu-

ment arg(zi) to define the dominant phase of a cell’s activity. These phase-locking vari-

ables are similar to the order parameters used to study synchrony [Arenas et al., 2008].

We classify cell i as inspiratory, expiratory, tonic, or silent by:

1. Silent: firing rate is less than 0.1 Hz,

2. Inspiratory: |zi| > 0.2 and | arg(zi)| ≤ π/2,

3. Expiratory: |zi| > 0.2 and | arg(zi)| > π/2,

4. Tonic: otherwise.

Two population phase analysis

For the two microcircuit model, we are also interested in the phase relationship between

the two populations. To study this, we examine the burst-by-burst phase differences be-

tween the two populations’ integrated traces and extract descriptive statistics of the phase

differences. The N1 neurons in Pop. 1 and N2 neurons in Pop. 2 define two separate groups

that we analyze as in Sections 4.2.4, 4.2.4, and 4.2.4. Note that because of the symmetry

of P(E) and P(I), Pop. 1 and Pop. 2 are statistically equivalent. The burst times define two

vectors t1∗ and t2∗, where ti∗
j is the time for the jth peak in the signal of population i = 1

or 2. Pop. 1 is set as the reference signal for phase analysis. We then define a window with

respect to the reference as Wj = [ti∗
j , ti∗

j+1], where i is the chosen reference signal. For each

peak ` in the non-reference signal, which we write as tī∗
` , we find the reference window

Wj so that tī∗
` ∈ Wj. In other words, for each peak in the non-reference signal we find
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the two peaks it lies between in the reference signal; we say that these peaks delineate

the reference window. Once we have the reference window to use for the given peak, we

define the phase difference between the two signals as θi =
ti∗
j+1−tī∗

`

ti∗
j+1−ti∗

j
∈ [0, 1].

For an accurate description of the overall phase difference between the signals, we use

directional statistics [Jammalamadaka and SenGupta, 2001], which account for the fact

that θ = 0 and 1 are identified. We can imagine that each phase difference is mapped to

a circle, where we can then calculate the average position of those phase differences and

how spread out the values are on that circle with respect to that average. To do this, we

map the θi onto the unit circle using the equation ζk = e2πiθk . We then take the average of

these complex-valued points, ζavg = 1
n ∑n

k=1 ζk.

We next calculate two quantities: the average phase difference Φ = arg(ζavg)/(2π)

and the phase order Ω = |ζavg|. The average phase difference Φ is the circular average of

the peak-by-peak phase difference between the two signals through time. The phase order

Ω tells us how concentrated the phase differences are compared to the average. If ζk ≈

ζavg for all k, then |ζavg| ≈ 1. However, if the values of ζk are uniformly spread around

the unit circle, we would have a ζavg ≈ 0, since opposite phases cancel out. Thus, the

phase order 0 ≤ Ω ≤ 1, and the closer it is to one, the more reliable the phase difference

is between the two rhythms over time.

Irregularity scores

We define the irregularity score of sequence xj as

IRS(x) =
1

nbursts

nbursts

∑
j=1

∣∣xj+1 − xj
∣∣∣∣xj

∣∣ . (4.5)

Here, xj denotes either the amplitude of the jth detected burst (amplitude irregularity) or

the period between bursts j and j + 1 (period irregularity). The irregularity score IRS (x)

measures the average relative change in x.
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Statistical tests

We analyzed the amplitude, period, amplitude irregularity, and period irregularity using

a linear mixed effects model. This model captures the repeated measurement structure

inherent in our experimental design. In particular, we model the response (amplitude,

period, etc.) ys,d of a slice s to drug d as

ys,d = a + as + µd + εs,d,

where a is a fixed intercept (representing the control level of y), as is a zero-mean random

effect for each slice, µd is a fixed effect for each drug (DNQX or DNQX+PTX), and εs,d is

a zero-mean noise term. We fit this model using the lmerTest package in R, and the code

and data used for fitting and analysis are provided in the Data Supplement. In the results

we report the estimate of the fixed effects (a, µd), standard error (SE), degrees of freedom

(DF), t value, and p value.

4.3 Results

We developed a network model of the preBötC and used this to examine the impact of

connectivity and inhibition. Each cell in the network is governed by membrane currents

that can produce square wave bursting via the persistent sodium current INa,p [Butera

et al., 1999a]. We include bursting pacemaker (B), tonic spiking (TS), and quiescent (Q)

cell types in realistic proportions. Through simulations, we examine the effects of network

connectivity and the presence of inhibitory cells on rhythm generation. To achieve this,

we vary three key parameters over their biologically plausible ranges: (1) the fraction of

inhibitory cells pI , (2) the average total degree kavg, i.e. the average total incoming and

outgoing connections incident to a neuron, and (3) excitatory and inhibitory maximal

synaptic conductances gE and gI . The parameter kavg controls the sparsity of synaptic

connections present in the network; as kavg increases, the network becomes increasingly

connected.
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As we detail below, we compute metrics of synchronous bursting within the microcir-

cuit as these network parameters vary. We then generalize the model to two coupled

microcircuits and test whether the added network structure can generate multi-phase

rhythms. Finally, we also compare these model effects to experiments with preBötC slice

preparations, where we use a pharmacological approach to modulate the efficacy of exci-

tatory and inhibitory synapses.

4.3.1 Inhibition and sparsity weaken the model rhythm

We first fix a moderate level of network sparsity, so that each cell receives and sends a

total of kavg = 6 connections on average, and we also fix the synaptic strengths (gE and

gI = 2.0 nS). In Fig. 4.1, we show the behavior of the network for varying amounts of

inhibitory cells pI .

In Fig. 4.1A, the inhibitory fraction pI = 0, so the network is purely excitatory. In this

case it generates a strong, regular rhythm, and the population is highly synchronized.

This is clear from both the integrated trace xint, which captures the network average ac-

tivity and thus the rhythm (defined in Section 4.2.4), and the individual neuron spikes

in a raster, which are clearly aligned and periodic across many cells in the microcircuit.

To further quantify the levels of synchronized firing, we use the synchrony measure χ,

a normalized measure of the individual neuron correlations to the population rhythm,

formally defined in Eqn. (4.2). Values of χ ≈ 1 reflect a highly-synchronized population,

whereas χ ≈ 0 means the population is desynchronized. The cells in panel A are visibly

synchronized from the raster, and have synchrony χ = 0.88.

We introduce a greater fraction of inhibitory cells pI = 0.2 in panel B. Here, we see

more irregularity in the population rhythm as well as and reduced burst amplitude and

synchrony (χ = 0.72). In panel C, with a still greater fraction of inhibitory cells, pI = 0.4,

the network shows further reduced synchrony (χ = 0.28) and a very irregular, weak

rhythm. In this case, the “rhythm” is extremely weak, if it even can be said to exist at all,
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Figure 4.1: With higher fraction of inhibitory cells, synchrony and burst amplitude
decrease, and the integrated timeseries becomes more variable. Three simulations of the
respiratory network model: A, pI = 0%; B, pI = 20%; C, pI = 40%. Above, we show the
integrated trace, which is a lowpass-filtered average of the spiking activity of all N = 300
neurons in the network. Below, we show the spike raster of individual neuron activity.
In all cases, kavg = 6, gE = gI = 2.0 nS. Detected bursts are marked by open circles on
the integrated traces. At lower levels of synchrony, as in part C, what constitutes a burst
becomes ambiguous.

and could not drive healthy breathing.

Building on these three examples, we next studied the impact of inhibition on syn-

chrony over a wider range of network connectivity parameters. Here, we vary not only

the fraction of inhibitory cells pI , but also the sparsity via kavg. In Fig. 4.2, we summarize
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Figure 4.2: Synchrony decreases with inhibition and sparsity. The highest variabil-
ity across networks occurs at the synchronization boundary. A, Synchrony parameter χ
averaged over 8 network realizations, plotted versus the amount of connections kavg and
the fraction of inhibitory neurons pI . B, Standard deviation of χ over network realiza-
tions. Higher standard deviation indicates that the synchrony is not reliable for different
networks with those parameters. The area of highest standard deviation occurs at the
boundary of low and high synchrony, χ ≈ 0.5. This is indicative of a phase transition
between synchronized and desyncronized states.

the effects of inhibition and sparsity on synchrony by plotting χ as those parameters vary.

Each point in the plot is the average χ over 8 network realizations with the corresponding

parameters. The main tendency is for higher synchrony with higher kavg, i.e. higher con-

nectivity and less sparsity, and lower synchrony with higher pI . A similar effect occurs

when varying gE and gI , where stronger excitation synchronizes and stronger inhibition

desychronizes (shown in Fig. 4.8 for comparison with pharmacological experiments).

Inhibition thus decreases the synchrony within the preBötC microcircuit, which hin-

ders the rhythm. At or above pI = 50%, the network is desynchronized for all connectivi-

ties kavg. With an inhibitory majority, most inputs a neuron receives are desynchronizing,

thus no coherent overall rhythm is possible. This is one of our first major results: In a

single microcircuit, constructed with homogeneous random connectivity and with INa,p-
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driven burst dynamics [Butera et al., 1999a], inhibition cannot lead to the creation of a

multi-phase rhythm. Inhibition only has the effect of desynchronizing bursting neurons

and disabling the overall rhythm.

For any type of random connectivity, there is no single network corresponding to a

given inhibitory fraction and sparsity level. Rather, each setting of these parameters de-

fines a probability distribution over a whole family of networks, and we can study rhythm

generation on sample realizations. This raises the question of how consistent our findings

are from one of these networks to the next. To address this, we next depict the standard

deviation of χ across the 8 network realizations, shown in Fig. 4.2B. The standard devi-

ation tells us how much variation in synchrony to expect for different random networks

with these parameters, with a higher standard deviation indicating less reliability. The

variability in networks is a result of their random generation. The highest standard devi-

ation occurs near the border between synchrony and disorder, where the average χ ≈ 0.5

(see panel A). Above this border, almost all networks exhibit low synchrony, and below it

networks consistently show the same levels of high synchrony. Near the transition, ran-

dom variations in the network structure have a larger effect on synchrony. The increase

in standard deviation at the boundary between high and low synchrony is indicative of

a “phase transition” between synchronized and desynchronized network states [Arenas

et al., 2008].

4.3.2 Inhibition creates an expiratory subpopulation

In the preBötC, the majority of cells fire in phase with inspiration, but there are also cells

that fire during other phases (post-inspiratory or expiratory) along with tonically active

cells. A goal of our study is to identify the network and inhibitory effects leading to this

variety of cells.

In order to analyze the time during the ongoing population rhythm at which individ-

ual model neurons are active, we identify robust peaks in the integrated trace as popula-
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Figure 4.3: Expiratory cells arise from inhibition, but can only occupy a minority with-
out disrupting the inspiratory rhythm. A, Neuron phase-locking variables for the simu-
lation in Fig. 4.1B (kavg = 6, pI = 20%). Each neuron has an associated complex number
zi with 0 ≤ |zi| ≤ 1. The magnitude |zi| is plotted against angle arg zi. These are used
to define inspiratory, expiratory, and tonic neurons via the labeled regions separated by
the dashed lines. B, Expiratory (anti-phase with main rhythm) neurons as a function of
network parameters kavg and pI . The fraction of expiratory neurons increases with inhibi-
tion or as the connectivity becomes weaker. The blue indicates the absence of any overall
rhythm, defined as χ < 0.25. C, An example of a simulation with two-phase activity, with
kavg = 6, pI = 30%, gE = 5.0, and gI = 2.0. A minority of neurons produce a reliable,
small bump after every burst. It is aligned near 0.7π, so it is more of a post-inspiratory or
pre-expiratory burst. These expiratory cells are rebound bursting after being disinhibited.
This is similar to the “handshake” mechanism of Wittmeier et al. [2008]. However, this
type of two-phase rhythm is very rare in simulations.
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Figure 4.4: Example rasters of expiratory, tonic, and inspiratory cells. Expiratory cells
exhibit lower firing rates than inspiratory ones, similar to the typical tonic firing observed
in slices. As shown, tonic classified cells can be bursting so long as their bursts do not
occur reliably at any given phase. The inspiratory cells shown are a random subset. Data
are for a representative network with kavg = 6, pI = 20% (same as Figs. 4.1B and 4.2B).

tion bursts (see Section 4.2.4 for details). This allows us to map time into a phase variable

φ ∈ [−π, π] and study neuron activity triggered on phase. Each peak in the rhythm oc-

curs as the population bursts in synchrony and sets the phase φ = 0. Values of φ ≈ 0

correspond to the inspiratory phase, since this corresponds to activity in phase with the

overall population rhythm, which for the preBötC is inspiration. A phase near π or −π

we call expiratory. We examine cells’ firing rates as a function of phase, which we call the

burst triggered average (BTA, Eqn. 4.3). Using this, we define a phase-locking variable

zi (Eqn. 4.4) for each cell. The magnitude |zi| reflects how selectively cell i responds to

phase, and the angle arg(z) tells the phase it prefers. This allows us to classify cells as in-

spiratory, expiratory, tonic, or silent. Fig. 4.3A shows the phase-locking variables zi for an

example simulation with parameters that generate a realistic rhythm (kavg = 6, pI = 20%,

χ = 0.716, with raster and integrated trace in Fig. 4.1B). In this case we see most neurons
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Figure 4.5: Expiratory cells preferentially receive input from other excitatory, expi-
ratory cells and inhibitory, inspiratory cells. B, The top row shows the distribution of
inputs, excitatory on left and inhibitory on right, colored by whether the receiving cell
is inspiratory (black bars) or expiratory (white bars). Expiratory cells receive less exci-
tatory and more inhibitory connections than inspiratory cells. The center and bottom
rows breaks down these inputs by the phase of the presynaptic neuron, inspiratory in-
puts shown in the center and expiratory below. Expiratory cells preferentially receive
excitatory input from other expiratory cells (compare middle left and bottom left). Fur-
thermore, inhibitory input to expiratory cells tends to come from inspiratory cells rather
than other expiratory cells (middle right and bottom right). Data are for a representative
network with kavg = 6, pI = 20% (same as Figs. 4.1B and 4.2B). There were 251 inspira-
tory, 23 expiratory, 15 tonic, and 11 silent cells.
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are inspiratory, with a dominant cluster of phase-locking variables centered on |z| ≈ 0.8

and arg(z) ≈ 0. The rest of the cells are distributed approximately uniformly at random

in the phase/magnitude cylinder. In this example, the majority of cells are inspiratory,

with a smattering of expiratory and tonic cells.

Panel B in Fig. 4.3 shows our main results. For any connectivity level kavg, we find that

the number of expiratory neurons increases as the fraction of inhibitory cells pI increases

until the rhythm degrades entirely. Note that there can be a few expiratory neurons even

with pI = 0 for kavg < 4. However, at this connectivity each cell has less than 2 incom-

ing connections on average. The expiratory cells in that case are isolated from the rest

of the network and have in-degree zero, with their phase only reflecting random initial

conditions. Comparing Figs. 4.2A and 4.3B, we see that the number of expiratory neurons

grows as synchrony decreases.

Another key finding of panel 4.3B is that there are never more than 20% expiratory

cells. This means that, in this kind of unstructured microcircuit, it is not possible to create

a two-phase rhythm where the expiratory burst is of similar magnitude to the inspiratory

burst. Up to approximately 20% of neurons can be expiratory without destroying the

rhythm, defined as maintaining χ ≥ 0.25. Fig. 4.3C shows an example of a rhythm with

two phases, where the expiratory or post-inspiratory phase recruits only a minority of

cells. The expiratory burst in this case is caused by rebound bursting of expiratory cells

when they are released from inhibition. However, a two-phase rhythm of this magnitude

is rare in our simulations. For example, it does not occur in other network realizations

with the same parameters as Fig. 4.3C.

One of our goals is to understand the network mechanisms that give rise to expiratory

cells. In Fig. 4.4, we show the firing properties of some example expiratory, tonic, and

inspiratory classified cells. Expiratory and tonic cells both fire at lower rates than inspira-

tory cells, which are active in tight bursts. The modeled expiratory cells thus show tonic

active behavior which is suppressed by inhibition, as observed in slice [Shao and Feld-

man, 1997, Lieske et al., 2000]. Note that some of the tonic cells in Fig. 4.4 are bursting,



119

just not at a reliable rhythm phase.

Each neuron’s phase-locking properties are determined by its intrinsic dynamics and

the excitatory and inhibitory synaptic currents it receives during various phases of the

rhythm. In the model, we find that expiratory cells receive different synaptic inputs than

inspiratory cells. We can see this by plotting their input properties in Fig. 4.5, in this

case for a typical simulation in the partially synchronized regime, the same parameters as

Fig. 4.1B. Overall, expiratory cells have less excitatory inputs and more inhibitory inputs

than inspiratory cells (top panels). We also break down these inputs by the phase of

the presynaptic cell. Expiratory cells receive less excitation during the inspiratory phase,

and they similarly receive more inhibition during the inspiratory phase (center panels).

Given that expiratory cells are the minority, the trends for inputs during the expiratory

phase are not as strong (bottom panels). This suggests that expiratory cells emerge from

random configurations in the network, which partitions itself into different phases based

on the types of interactions in each cell’s neighborhood. Excitatory synapses drive the

postsynaptic neuron into phase with the presynaptic one, while inhibitory synapses drive

neurons out of phase.

As we have shown in the preceding two sections, the presence of inhibition leads to

changes in the population rhythm generated in microcircuits: a degradation of the overall

population synchrony as well as an increasing presence of expiratory cells. The average

degree kavg controls the sparsity of connections in the network, and lower values also

lead to less synchrony. Moreover, we have shown that cells become expiratory due to

the arrival of inhibition during the the inspiratory phase as well as excitation during the

expiratory phase.

4.3.3 Two population network shows the benefits of half-center inhibition

In Section 4.3.1 we examined the effect of inhibition on rhythmic spiking in a single mi-

crocircuit, as would model, for example, an isolated preBötC [e.g. Ramirez et al., 1997a].
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Figure 4.6: A, Schematic of the two population network. The average amount of exci-
tatory connections on average are fixed, but we vary the expected intra-group and inter-
group inhibition kintra and kinter. B and C, Two simulations of the network with different
parameters: Each simulation also has a schematic on the right demonstrating the differ-
ences in inhibitory network strengths. A thicker line indicates more connections, and a
darker color indicates a more reliable rhythm. Panel B shows the case kintra = 1.0 and
kinter = 4.0. Panel C depicts kintra = 2.0 and kinter = 1.5. There, we observe less reliable
rhythms, with decreased phase order Ω and decreased synchrony χ, despite approxi-
mately equal average phase difference Φ. D, Average synchrony over 8 realizations for
each kinter and kintra pair. Higher values of χ occur above the diagonal kinter = kintra line.
E, Average phase difference Φ of rhythmic bursts between the two populations. No clear
trends are evident, and the value is close to Φ = 0.5, perfectly out-of-phase, in much of
the region. F, Average phase order Ω. Higher phase order indicates the relative phase of
bursts in Pop. 1 and Pop. 2, i.e. Φ in panel E, are reliable. The phase order appears to be
proportional to the synchrony, with the highest values above the diagonal. Star and circle
symbols in D–F are the network parameters used to produce the rhythms in panels B and
C.
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There we saw that increasing inhibition causes the synchrony and rhythmicity of neural

spiking to degrade. Here, we extend our analysis to a model of two coupled microcircuits.

Each microcircuit, taken separately, is a heterogeneous subnetwork of cells with exactly

the same properties and parameterization as for the networks studied above. The two

microcircuits are then coupled with mutual inhibition in the manner of a classical half-

center pattern generator. We explore the effects of inhibition on the synchrony within

each microcircuit, as well as on the phase of the two microcircuits relative to one another.

Figure 4.6A shows a schematic of our network model. As in the previous sections,

each microcircuit (a distinct population of cells) contains both excitatory and inhibitory

neurons. For simplicity, since we want to isolate the effects of inhibitory structure, the

excitatory neurons only project locally, that is within the same microcircuit. We vary

inhibitory connectivity via the parameters kinter and kintra, the intra-group and inter-group

average degrees for inhibitory cells. For example, setting kinter = 0 yields independent

populations that do not interact; when kintra = 0 and kinter 6= 0, we have a network version

of the classic half-center oscillator, with inhibition purely between the two microcircuits.

We will investigate network activity at these two extremes and intermediate levels of

connectivity.

Panels B and C in Fig. 4.6 illustrate the role of inhibitory connectivity on rhythmic

spiking dynamics in two representative cases. The upper network (see schematic), has

weaker inhibition within each population than between the populations, with parame-

ters kintra = 1.0 and kinter = 4.0. The population activity exhibits a strong, regular, and

synchronous rhythm with little change in the phase relationship over time. The bottom

network has the opposite connectivity: stronger inhibition within each population and

weaker inhibition between (kintra = 2.0 and kinter = 1.5). This network demonstrates a

weak, sporadic rhythm with a varying phase relationship through time. These suggest

that inhibition within microcircuits competes with inhibition between them to determine

the strength and phase relationships of rhythms. We now explore this trend across a broad

range of connectivity levels.
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First, we show how intra- and inter-group inhibition affect the synchrony in the two

population model. To quantify this, we compute the synchrony measures for each popu-

lation separately (χ1 and χ2), and report the average χ = (χ1 + χ2) /2. Figure 4.6D shows

the results. As intra-group inhibition kintra increases, there is a degradation in synchrony.

This is consistent with the results from the single population model, where unstructured

local inhibition reduces the strength and regularity of the population rhythm. Panel C

gives an example of network activity in this regime, and is indicated by a circle in panel D–

F. However, as we add inhibitory connections between the two populations by increasing

kinter, synchrony recovers: overall, we see stronger synchrony above the diagonal where

kinter = kintra. Panel B, indicated by the star in D–F, illustrates this. Overall, Figure 4.6D

suggests that intra-group inhibition destabilizes synchrony, while inter-group inhibition

can have the opposite effect.

In order to drive breathing, in which each microcircuit presumably generates a differ-

ent phase in a motor pattern, the model should produce two rhythms with reliable phase

separation. To analyze this, we first compute a measure of the average, over time, of the

difference between the phases of each microcircuit, which we call Φ. A value Φ = 1

or 0 indicates that the two rhythms are, on average, in-phase, and Φ = 0.5 indicates

the two rhythms are, on average, perfectly out-of-phase (see further details in methods

Sections 4.2.4 and 4.2.4). Figure 4.6E shows that Φ ≈ 0.5 over the range of inhibitory

connectivity. Thus, the two microcircuits appear to be out of phase on average, regardless

of connectivity. A glance back at panels B and C reveals that this out-of-phase behav-

ior can arise in different ways: either for two reliable rhythms that are phase-locked, or

for two unreliable rhythms that drift broadly with respect to one another over time. To

quantify this difference, we use a phase order metric Ω (Section 4.2.4), shown in Fig. 4.6F.

Here, Ω = 1 indicates that the phase differences are completely repeatable over time,

while Ω = 0 indicates phase differences are completely unreliable, instead being evenly

spread over time. In agreement with the two cases illustrated in panels B and C, as we in-

crease the inhibition within microcircuits kintra, phase reliability Ω decreases; conversely,



123

increasing kinter increases Ω.

These results lead to the important conclusion that it is not a particular number of in-

hibitory connections in a network that leads to a stable two-phase rhythm, but instead the

relative strengths of intra- and inter-group connectivity. For a stable two-phase rhythm,

there need to be at least as many inhibitory connections between populations as within

populations. The key rhythm metrics, synchrony χ and phase order Ω, demonstrate the

same effect, because χ and Ω are strongly correlated. This makes sense because the

rhythms are generated through synchronous bursting. Note that an irregularity score

for the phase differences would yield similar results as Ω, but we prefer Ω since is takes

into the account the circular structure of the phase variable. Increasing intra-group inhi-

bition pushes the system to the edge of stability. However, we are able to recover some

rhythm stability and phase separation reliability by increasing inter-group inhibition. In

summary, we see the same desynchronizing effect of local inhibition as in the single pop-

ulation model, with some benefit to synchronous rhythms possible from inter-group in-

hibition.

4.3.4 Partial synchrony of in vitro preBötC rhythms in multi-array recordings

We now turn to experiments with the preBötC, to test the model predictions about the

role of inhibition in such circuits. We recorded from mouse transverse brainstem slices

containing the preBötC, keeping only those that initially exhibited robust rhythms. This

yielded a collection of 17 recordings of the population rhythm using a large extracellu-

lar local field potential (LFP) electrode. Of these, 4 were simultaneously recorded with

a linear electrode array to capture the behavior of multiple neurons (16, 29, 33, and 29

cells were isolated in individual experiments). From the multi-array data, we extracted

individual spikes and calculated the synchrony metric χ as in the model.

Our experiments reveal that a fully synchronized network such as in Fig. 4.1A is not

realistic under our experimental conditions. This is because preBötC slices exhibit signif-
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Figure 4.7: In vitro array recordings from transverse slice preparations exhibit partial
synchrony. We performed in vitro preBötC slice experiments, where we measured the
rhythm in control, partial excitation block (DNQX 0.7 µM), and partial excitation block
with full inhibition block (DNQX 0.7 µM + PTX 20 µM). We record the preBötC popula-
tion activity with a large electrode (LFP, arb. unit) as well as individual neurons in the con-
tralateral area using an array. The average activity of the isolated units is also shown (xint,
Hz/cell). A, Control conditions show a robust population rhythm with some amplitude
and period irregularity. B, Partial excitation block using DNQX degrades the population
synchrony, with decreased burst amplitude, slower rhythm, and more irregular intervals
between bursts. C, Blocking inhibition with PTX allows the rhythm to recover toward
control conditions. D, Synchrony in the model, as a function of excitatory and inhibitory
synaptic conductances gE and gI , increases with stronger excitation and decreases with
stronger inhibition, similar to varying connectivity kavg and inhibitory fraction pI . Ar-
rows indicate the presumed effects of DNQX and PTX on the model. E, Measurements of
synchrony from our 4 array recording experiments. Synchrony takes intermediate values
in all conditions, decreasing with DNQX and recovering after PTX.
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icant cycle-cycle variability [Carroll et al., 2013, Carroll and Ramirez, 2013]. So real net-

works are somewhere in the intermediate synchrony range. We confirmed this in multi-

array in vitro experiments. An example experiment with 16 cells is shown in Fig. 4.7A.

We observe that there is significant cycle-to-cycle period and amplitude variability in the

rhythm, which is reflected in the partial synchrony of the 16 neurons recorded (χ = 0.57).

With n = 4 multi-electrode control experiments, we measured an average χ = 0.48 (SD

0.055).

The number of expiratory neurons observed in other experiments is also consistent

with the degree of partial synchrony in the model. Multi-array recordings by Carroll

et al. [2013] found 5.0% expiratory and 3.9% post-inspiratory cells. Counted together, as

we are doing, a realistic percentage of expiratory cells is 9%. Referring to Figs. 4.2A and

4.3B, we see that this occurs near the region where χ ≈ 0.6. This value is not far from the

experimentally measured average χ = 0.48. However, we did not observe any expiratory

cells in our limited set of 4 multi-array experiments, which is expected based on Carroll

et al. [2013].

In Fig. 4.7B and C, we also show the behavior of the slice under pharmacological ma-

nipulations of the efficacy of excitatory and inhibitory synaptic transmission, shown here

for completeness and explored in more detail in Section 4.3.5. Specifically, we use the glu-

tamatergic antagonist DNQX and the GABA and glycine receptor antagonist picrotoxin

(PTX) (Section 4.2.3). After recording the control rhythm, we applied DNQX 0.7 µM to

partially block excitation and observed the resulting rhythm. After recording in DNQX

conditions, we follow with application of pictrotoxin (PTX) 20 µM. The dosages are cho-

sen so that DNQX partially blocks excitation [Honore et al., 1988] but does not stop the

rhythm, whereas the PTX dosage is high enough to effect near-complete disinhibition [see

Fig. 1 in Othman et al., 2012]. We see in Fig. 4.7B that DNQX leads to less synchrony and

a visibly degraded, slower rhythm. Moreover, Fig. 4.7C shows that when this inhibition

is reduced by adding PTX, the rhythm recovers toward control values of frequency, am-

plitude, and synchrony.
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When varying synaptic conductances in a simulation of the effects of DNQX and PTX,

the computational model behaves as one might expect from our earlier results. We gener-

ated 8 networks with average degree kavg = 6 and inhibitory fraction pI = 20%. Then we

varied the maximal conductances of excitatory and inhibitory synapses gE and gI while

keeping the network structure fixed. We show the synchrony χ as a function of gE and

gI in Fig. 4.7D. Increased gE leads to enhanced synchrony, while, as expected from the

results above, increased gI desynchronizes the population. Thus, once again we find that

excitation synchronizes and inhibition desynchronizes activity within a microcircuit.

Finally, in Fig. 4.7E we summarize the synchrony χ across all 4 multi-array exper-

iments and pharmacological conditions. Clearly, the networks are all partially synchro-

nized. Synchrony χ decreases by about 0.07 (SE 0.02, DF 8, t=-3.414, p=0.009) with DNQX,

with a recovery to near baseline following PTX. These trends are shown in only 3 out of 4

experiments, so we stress that this is marginally significant according to the mixed effects

model (see Table 4.2). We next show how proxies for the synchrony which measure reg-

ularity of the rhythm can be applied to our larger collection of LFP recordings to further

illuminate this trend.

4.3.5 Excitatory and inhibitory balance modulates rhythm irregularity in vitro and in silico

In Sections 4.3.1–4.3.3, we use a computational model to show how population rhythms

depend on levels of inhibitory connectivity within and between microcircuits. We have

demonstrated that in vitro preBötC networks are naturally in a partially synchronized

state, Sec. 4.3.4. We now investigate how in vitro preBötC rhythms behave under the mod-

ulation of synaptic conductances using pharmacological techniques. To quantify rhythm

quality from the integrated LFP signal, available in all 17 of our recordings, we turn to

amplitude and period irregularity. These measure the cycle-to-cycle variability of the se-

quence of burst amplitudes and inter-burst-intervals [Sec. 4.2.4 and Carroll et al., 2013,

Carroll and Ramirez, 2013].
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Our experiments use the synaptic antagonists DNQX and PTX to pharmacologically

modulate the efficacy of excitatory and inhibitory synapses in vitro, analagous to lowering

gE and gI , respectively. This is illustrated with the arrows in Fig. 4.7D. In Fig. 4.8, we also

illustrate the behavior of the amplitude and period irregularity scores in the model as gE

and gI vary. Comparing Figs. 4.8 and 4.7D, it is apparent that both irregularity scores

increase in the model as χ decreases. In the 13 experiments where we have only an LFP

signal, this suggests that irregularity can stand in as a proxy for neuron synchrony, which

we could only measure with multi-cell array recordings.

We plot in vitro irregularity across conditions in Fig. 4.8 using box plots. The results

of statistical tests using a linear mixed effects model are shown in Table 4.2. To summa-

rize, amplitude irregularity shows no significant trends with the blocking of excitation

via DNQX and inhibition via PTX. However, we noted a statistically significant increase

(DF=34, t=5.03, p=1.6× 10−5) in period irregularity of about 0.12 (SE 0.02) following ap-

plication of DNQX and subsequent decrease with PTX to near baseline. The qualitative

effect on period irregularity matches trends present in the computational network model.

The model also predicts that there would be a slight decrease in irregularity with initial

application of PTX after control, i.e. a variant of the previous protocol without DNQX.

We performed limited experiments with varying doses of PTX and found some small

decreases in period irregularity which were not significant (data not shown). However, it

did appear that the more irregular control slices showed greater decreases in irregularity

with application of PTX, as also would be expected from the model results in Fig. 4.8.

With regards to the lack of a trend in amplitude irregularity, we note that the “land-

scapes” of the amplitude and period irregularity scores produced by the computational

model (heat maps in Fig. 4.8) show markedly different regions of high irregularity. In

the amplitude irregularity case, the red region of high values is much wider than in the

period irregularity case. For amplitude, it is shaped like a plateau rather than the steep

slope of period irregularity. This suggests that amplitude irregularity is less sensitive

to synaptic modulation, perhaps making trends harder to identify in pharmacological
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Figure 4.8: Modulation of inhibition and excitation changes the rhythm in comparable
ways for experiments and the model. (Above: model) The effect of changing conduc-
tances gE and gI . Burst amplitude and period irregularity decrease with stronger excita-
tion and weaker inhibition. Both of these measures are negatively correlated to the popu-
lation synchrony, shown in Fig. 4.7D. (Below: experiments) This plot summarizes 17 ex-
periments. We extracted bursts from the LFP and measured the amplitude and frequency
irregularity of those rhythms. Amplitude irregularity showed no significant trends across
conditions. However, period irregularity showed a significant increase from control with
DNQX, a decrease from DNQX to DNQX+PTX, and a small increase between control and
DNQX+PTX. See Table 4.2 for the full output of the statistical tests.
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Fixed Effect Std. Error DF t value Pr(>|t|)

Amplitude Irregularity

Intercept 0.197894 0.024664 24.63 8.024

DNQX -0.016169 0.018067 34 -0.895 0.377

DNQX+PTX -0.005418 0.018067 34 -0.3 0.766

Period Irregularity

Intercept 0.21622 0.02627 30.38 8.23

DNQX 0.12076 0.02401 34 5.03

DNQX+PTX 0.031 0.02401 34 1.291 0.205

Amplitude Mean (a.u.)

Intercept 0.070486 0.009401 18.72 7.498

DNQX -0.01134 0.003552 34 -3.192 0.00304

DNQX+PTX -0.000614 0.003552 34 -0.173 0.86379

Period Mean (s)

Intercept 4.0594 1.0299 26.11 3.942 0.00054

DNQX 4.6371 0.8105 34 5.721

DNQX+PTX 1.9396 0.8105 34 2.393 0.02238

Synchrony χ

Intercept 0.47875 0.02506 6.497 19.104

DNQX -0.0715 0.02094 8 -3.414 0.00917

DNQX+PTX -0.04125 0.02094 8 -1.97 0.08439

2.48 x 10-8

3.14 x 10-9

1.57 x 10-5

4.76 x 10-7

1.98 x 10-6

5.94 x 10-7

Table 4.2: Statistical results for in vitro measurements of amplitude irregularity, period
irregularity, amplitude, and period. We report the estimated fixed effect for the intercept,
DNQX, and DNQX+PTX conditions, as well as standard error (SE), degrees of freedom
(DF), t value, and p value for each effect. These data summarize 17 LFP recordings save
the synchrony fit, which comes from 4 multielectrode recordings.
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Figure 4.9: The effect of DNQX and PTX on in vitro rhythm amplitude and period, similar
to Figure 4.8. Amplitude decreases with DNQX while period increases, with both recov-
ering to near baseline after addition of PTX. See Table 4.2 for the result of statistical tests
on this data.

experiments. However, it could also be that bursting in the real preBötC is essentially

an “all-or-nothing” phenomenon, with amplitude irregularity a result of noise but not

strongly dependent on details of the burst dynamics, in contrast to the model we study.

This would make it insensitive to blockers, since once a burst is triggered it is reliable and

consistent, similar to the triggering of an action potential. This is interesting in the context

of the burstlet hypothesis [Kam et al., 2013].

4.3.6 In vitro rhythm slows following excitatory block

Besides variability, we found in experiments that synaptic blockers also significantly change

the overall period and amplitude of rhythmic bursts, as shown in Fig. 4.9 and Table 4.2.

Mean burst amplitude is decreased by -0.011 units (SE 0.004, DF=34, t=-3.192, p=0.003)

following DNQX and recovers to baseline with application of PTX. This is consistent with

the effect of varying gE and gI in the model. In experiments, we also see a significant

slowing of the rhythm. The burst period increases with DNQX by 4.6 s (SE 0.81, DF=34,
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t=5.72, p=2× 10−6) and only partially recovers with application of PTX, remaining 1.9 s

(SE 0.81, DF=34, t=2.39, p=0.02) above baseline. As described above, while our network

model qualitatively predicts the experimental trends for period variability and amplitude

modulation in the isolated preBötC, it does not reproduce overall changes in burst period.

Simple modifications to the model capture the period slowing with excitatory block-

ers. Suppose each respiratory cell receives concurrent input from excitatory and inhibitory

pools of tonic neurons [Ramirez et al., 1997b]. These cells determine a baseline drive to

the preBötC, which we model as a constant current Iapp. Tonic external conductances gapp
E

and gapp
I have the same effect but complicate our parameter tuning due to modification

of the effective leak current. DNQX would then lower the excitatory drive, leading to

decreased Iapp. A negative drive current then slows the amount of time it takes a neuron

to integrate to bursting, lowering the neuron’s intrinsic burst frequency. PTX, by less-

ening the influence of the inhibitory tonic pool, causes a net disinhibitory effect on the

neuron, restoring Iapp to near baseline. So far, we have taken Iapp = 0 as the baseline,

but these differential effects remain regardless of the baseline tonic current. Mimicking

DNQX with Iapp = −4 pA causes the period to approximately double (not shown but

tested for kavg = 6, pI = 0.2, gE = gI = 3.0 in control, gE = 1.8 under DNQX).

One consequence of this tonic pool hypothesis is that changing the baseline drive also

changes the intrinsic dynamics of neurons. Increased hyperpolarization can cause tonic

cells to become bursters, and bursters to become silent in the absence of network effects.

However, this can benefit synchrony, since when the large pool of originally tonic cells

shift into bursting mode, they can help maintain a strong rhythm despite the reduced

excitatory synaptic drive. In a check for a few network structures, we found that the

‘main’ effects of excitation and inhibition on rhythms persist when we also make these

Iapp changes.

To recap, our experimental results show that the control preBötC networks lie in the

partially-sychronized regime. The results also confirm that the relative balance of exci-

tation and inhibition determine the level of synchrony and variability of the rhythm. In
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experiments, we also find a strong dependence of rhythm frequency on the amount of

inhibition, and we have discussed changes to the model which could explain this effect.

4.4 Discussion

4.4.1 Network structure of respiratory areas

The preBötC contains neurons which are silent, tonic spiking, or periodically bursting

pacemakers [Thoby-Brisson and Ramirez, 2001, Peña et al., 2004, Ramirez et al., 2011].

Numerous models are proposed for the preBötC, at the level of single neurons with pace-

maker dynamics [Butera et al., 1999a, Best et al., 2005, Rubin et al., 2009b, Toporikova

and Butera, 2011, Park and Rubin, 2013] as well as networks of these neurons (Butera

et al., 1999b, Best et al., 2005, Purvis et al., 2006, Rubin et al., 2009a; Rubin et al., 2009b,

Schwab et al., 2010, Gaiteri and Rubin, 2011, Lal et al., 2011, Rubin et al., 2011, Carroll et al.,

2013, Carroll and Ramirez, 2013, Wang et al., 2014). Traditionally, these models have con-

sisted of just the excitatory, essential core of inspiratory neurons. However, Ramirez et al.

[1997b] showed that inspiratory cells receive concurrent excitation and inhibition in the

inspiratory phase during both in vitro and in vivo recordings from cat preBötC. Further-

more, Morgado-Valle et al. [2010] demonstrated the existence of glycinergic inspiratory

pacemakers within preBötC, likely candidates for the inhibitory population presynaptic

to those found by Ramirez et al. We have chosen to study the consequences of mixed

excitatory and inhibitory cells in this network.

The details of network structure in the preBötC is currently unknown, and molecu-

lar markers for rhythmogenic neurons have been found only recently [Wang et al., 2014].

Rekling et al. [2000] recorded from pairs of cells and estimated that 13% (3 of 23 pairs)

were synaptically connected. However, the distance between the connected neurons of

the 3 pairs is unknown. This, along with the small sample size, makes it difficult to

know whether this connectivity is representative for the entire preBötC. Moreover, synap-

tic transmission was not entirely reliable. Thus, the robustness of these excitatory con-
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nections is difficult to assess from those exceedingly difficult paired recordings. Hartelt

et al. [2008] imaged the dendrites and axons of neurons in the area and found a network

with spatially localized, modular structure similar to a small-world network. They esti-

mated average neuron degrees were between roughly 2 and 6 [Hartelt et al., 2008]. Carroll

and Ramirez [2013] recorded from in vitro slice preparations and argued for roughly 1%

connectivity using cross-correlation analysis of 10,778 pairs. The number of cells in the

preBötC is estimated to be around 300–600 [Wang et al., 2014, Winter et al., 2009, Hayes

et al., 2012, Feldman et al., 2013], although this differs significantly with the estimate of

3000 neurons by Morgado-Valle et al. [2010]. This difference is mainly due to varying

functional definitions of what constitutes a preBötC neuron. However, our results should

not change much with the network size: because we parametrize the connectivity by the

average degree, the in-degree distribution and thus variability of input signal to a given

neuron (proportional to k−1/2
avg ) will not change significantly.

The exact structure of the preBötC network remains debatable, but it appears clear that

the connectivity is relatively sparse. Many original models of the isolated preBötC assume

a fully-connected network, i.e. a complete graph [Butera et al., 1999b, Purvis et al., 2006,

Rubin et al., 2009b]. Gaiteri and Rubin [2011] studied a variety of different topologies

and their effects on the rhythm. Random graphs have recently become more popular

[Schwab et al., 2010, Gaiteri and Rubin, 2011, Lal et al., 2011, Carroll et al., 2013, Carroll

and Ramirez, 2013, Wang et al., 2014], however only a few of these studies have looked

at sparse random networks with average degree less than 10 [Carroll et al., 2013, Carroll

and Ramirez, 2013]. We believe this sparse regime is relevant to the irregularity observed

in vitro [Carroll et al., 2013].

While a clustered connectivity may be present in the preBötC, where it would have

profound effects on rhythm generation [Gaiteri and Rubin, 2011], direct evidence for this

is limited to the study of Hartelt et al. [2008]. Furthermore, the preBötC is a bilateral

rhythm generator with each side coupled to the other principally by excitatory connec-

tions [Lieske and Ramirez, 2006, Koizumi and Smith, 2008], making the two-population
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model perhaps well-suited for the preBötC. There is also evidence for excitatory connec-

tions between the expiratory and inspiratory centers [Onimaru et al., 2009, Tan et al., 2010,

Huckstepp et al., 2015]. We did try adding a few excitatory projections between the two

populations, and in our model only a few projections will make the two centers syn-

chronize. Having predominantly excitatory connections between bilateral preBötC areas

could further stabilize the rhythm. However, we have chosen to first model the simpler,

sparse but unstructured random connectivity as presented. We leave a full exploration of

such effects to future work.

4.4.2 Rhythm patterning by inhibition

The neural circuits that drive respiration can generate basic rhythms through excitation

alone, yet they also include strong inhibitory connections both within and between dif-

ferent microcircuits. Our aim here is to shine light on the role of this inhibition. Through

modeling studies that explored thousands of network configurations, we show that inhi-

bition plays two main roles in excitatory rhythm generators that depend systematically

on the structure of the underlying connectivity. Unstructured local inhibition within a

single excitatory microcircuit, as for our model of an isolated preBötC, destabilizes rhyth-

mic bursting by preventing the synchronization of excitatory neurons. This is in contrast

to the spiking models where inhibition facilitates synchrony and relevant, for example,

in the gamma oscillation [Börgers and Kopell, 2003]. Within such a single microcircuit

with sparse, random, and homogeneous connectivity, adding inhibitory cells does not

create a robust two-phase rhythm (i.e., inspiration and expiration). However, such inhibi-

tion does explain the presence of expiratory cells as have been observed experimentally

[Carroll et al., 2013, Nieto-Posadas et al., 2014]. Our pharmacological experiments in the

transverse preBötC slice also support the presence of local inhibition that is destructive

to homogeneous synchrony: when we first partially block excitation, and then inhibition,

we see that levels of period irregularity first increase and then decrease.
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The same qualitative effects of local inhibition persist in a two population inspiratory-

expiratory model, suggesting that the synchronizing and desynchronizing roles of excita-

tion and inhibition within a population persist in more complicated systems. Moreover,

long-range inhibition between excitatory microcircuits both stabilizes rhythms locally (re-

flected in their synchrony) and enforces reliable phase separation between microcircuits

(phase order), reminiscent of the concept of the half-center [Brown, 1911, Stuart and Hult-

born, 2008, Sharp et al., 1996] This suggests twin roles for inhibition: Within a single

microciruit, it reduces synchrony and introduces some out-of-phase cells; between pop-

ulations, it facilitates partitioning of the overall rhythm into different phases. As such,

inhibition balances against excitation in a way that depends on the on the overall connec-

tivity of the network.

How strongly do the twin roles for inhibition play out in biological circuits for breath-

ing? Anatomical studies have suggested substantial inhibition within microcircuits, and

recordings have shown some cells with expiratory or post-inspiratory firing within the

predominantly inspiratory preBötC [Carroll et al., 2013, Morgado-Valle et al., 2010, Nieto-

Posadas et al., 2014]. Intriguingly, our model predicts that the level of local inhibition that

is consistent with these observations moves the circuits as a whole toward the boundary

between ordered, synchronous and disordered, asynchronous activity. This could be use-

ful for making the network more sensitive to control signals. For instance, descending

excitatory inputs that selectively target the inhibitory population could lead to pauses in

the rhythm.

This frames two questions: First, what constructive role could such destabilizing in-

hibition play? Possibly, it could produce a rhythm that has a particular temporal pattern

(e.g. ramping) or that could be more flexibly controlled. Second, what role might destabi-

lizing inhibition play in disease states in which rhythms within and between respiratory

and other centers degrade?

Physiological studies suggest interesting answers to the first of these questions. Lo-

cal inhibition within the preBötC has a critical role in shaping the inspiratory pattern
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[Janczewski et al., 2013, Sherman et al., 2015], as our modeling study also shows. One

of the hallmarks of “eupnea” or normal breathing is an augmenting ramp-like inspira-

tion which is lost when inhibition is blocked in the isolated preBötC [Lieske et al., 2000].

Characterizing the synaptic profile of inspiratory neurons reveals the presence of concur-

rent inhibition and excitation which likely prevent an effective synchronizing between

the excitatory neurons, thereby slowing down the build-up of inspiratory activity. In-

deed, we hypothesize that the presence of local, desynchronizing role of inhibition within

the preBötC could also explain an ongoing debate in the field of respiration, i.e. why an

isolated preBötC can generate a eupnea-like inspiratory activity pattern in the absence of

the other phases of respiratory activity [Lieske et al., 2000, Ramirez and Lieske, 2003]. The

augmenting inspiratory discharge in the isolated preBötC is very sensitive to the blockade

of inhibition. In hypoxia, when synaptic inhibition is suppressed, the desynchronizing ef-

fect of local inhibition is lost and the isolated preBötC generates an inspiratory burst that is

characterized by a fast rise time reflective of a facilitated synchronization. However, the

Butera model we implemented does not exhibit these rise time effects at the single-cell

level. Instead, the behavior only becomes evident in the population due to the misalign-

ment of individual neuron bursts, and this overall effect is quite weak (data not shown). It

is likely that other currents are important for the individual burst characteristics and that

future models including these will provide further evidence for a role for local inhibition

in shaping inspiratory bursts.

4.4.3 Limitations of our study

There was considerable variability in the control rhythms and the responses to drugs. We

believe this is principally due to intrinsic variability of the preBötC network structure

across mice, the slicing procedure which damages the network to varying degrees, and

the moderate dose of DNQX. The multi-electrode recordings captured between 16 and

33 units. This small sample of cells contributes significant variance to our synchrony
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measure χ, and we believe this is why we cannot see a significant effect on synchrony. We

placed the electrode array where we could record from many inspiratory cells, however

we also found almost as many tonic cells. It is possible that these are cells which are not

integrated into the network and therefore could bias χ to lower values. In future work, it

would be important to see whether the rhythm also degrades with inhibitory agonists, e.g.

muscimol [see Janczewski et al., 2013]. However, agonists introduce a tonic input which

is rather different than modifying the synaptic efficacies, thus they will have a different

effect than antagonists or optogenetic stimulation.

Our slice experiments showed a slowing down with excitation block and no statisti-

cally significant variation in amplitude irregularity, both in contrast to the model. Other

membrane currents may explain these salient features of our pharmacological studies. We

proposed that tonic populations could drive the change in frequency. However, the CAN

current is another likely candidate. Since CAN-dependent pacemakers can rely on accu-

mulation of excitatory synaptic events to initiate bursting [Rubin et al., 2009a, Del Negro

et al., 2010], excitatory synaptic block will slow this accumulation, leading to an increase

the rhythm period. This mechanism would be similar to the synaptic integrator model of

Guerrier et al. [2015], which reproduced the period effects of NBQX (similar to DNQX).

As mentioned above, the CAN current is also probably important for generation of aug-

menting, ramping discharges. Our model excluded CAN for simplicity and because the

vast majority of respiratory models use the Butera et al. [1999a] persistent sodium equa-

tions. Also, it appears that cadmium-sensitive intrinsic bursting neurons (presumably the

same as CAN-dependent) are only a minority of the respiratory neurons in the preBötC

[Peña et al., 2004]. Hayes et al. [2008] present evidence that a low-threshold, inactivat-

ing K+ current IA is present in preBötC neurons and significantly affects rhythmogenesis.

They conclude that IA helps control amplitude and frequency irregularity by preventing

or delaying those neurons from responding without massive excitatory input. Beyond

irregularity, IA and ICAN are also important for overall burst shape, duration, inter-spike

intervals, burstiness, etc., which are interesting topics for future study. Finally, synaptic
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delays can be very important determinants of synchronization strength and phase rela-

tionships [Brunel and Hakim, 1999]. Future models will need to investigate how these

many currents interact with excitatory and inhibitory synaptic dynamics in rhythm gen-

eration.

4.4.4 Conclusions

Our results contribute to a large body of modeling and experimental work in the field.

Because local inhibition has a desynchronizing role, the preBötC cannot generate a two-

phase rhythm, consistent with lesioning experiments performed by Smith et al. [2007].

Multiarray recordings from more than 900 neurons that indicate less than 9% of the neu-

rons in the preBötC are expiratory [Carroll et al., 2013] also support this finding. More-

over, our modeling study also provides theoretical support for the respiratory network

organization recently proposed by Anderson et al. [2016]. They propose that each phase

of the respiratory rhythm is generated by its own excitatory microcircuit located in a dif-

ferent region of the ventral respiratory group, the inspiratory phase being generated by

the preBötC, post-inspiration by its own complex (the PiCo) [Anderson et al., 2016], and

active expiration by the so-called lateral parafacial/retrotrapezoidal group [Janczewski

and Feldman, 2006, Onimaru et al., 2009, Huckstepp et al., 2016]. This idea is similar in

spirit to the microcircuit models of Smith et al. [2013], Molkov et al. [2013], Koizumi et al.

[2013], Onimaru et al. [2015], which contain more areas. However, each of these excitatory

microcircuits contains neurons with different anatomical, physiological and modulatory

properties, and each is dependent on excitatory synaptic transmission, able to generate

rhythmicity in the absence of synaptic inhibition [Ramirez et al., 2016].

Overall, a modular organization of rhythm generating networks has both evolution-

ary [Ramirez et al., 2016] and functional implications; the latter may explain, for example,

why we can hop on one leg without requiring a major network reconfiguration. We hy-

pothesize that the separation of a rhythmic behavior into several excitatory microcircuits



139

may indeed be dictated by the architecture of these sparsely connected excitatory net-

works that generate rhythmicity based on excitatory synaptic mechanisms. The addition

of local inhibition to each microcircuit adds another layer of complexity to the generation

of rhythms which can affect synchrony and controllability. The lessons learned from the

respiratory circuit may also apply to networks that generate locomotion or other rhyth-

mic behaviors, where each phase may be composed of separate microcircuits that are

interacting with inhibitory connections.
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Chapter 5

CONCLUSION

We have presented three distinct but related approaches to studying network struc-

ture, with an emphasis on neuroscientific applications.

In Chapter 2, we highlight a statistical inference method which recovers the weighted

connection matrix of the whole brain from tracing data. So far, the tracing data that re-

searchers collect for mouse [Oh et al., 2014], rat [Bota and Swanson, 2007], and marmoset

[Okano et al., 2015, 2016], have been analyzed at the coarse regional level. The tools we

develop are like a magnifying glass on top of this, revealing important bumps and cran-

nies in the fabric of projections. Longer term, next-generation electron microscopy data

offer a bridge between single-neuron microscale connectivity and the mesoscale networks

we analyze today. In the next 10 years, more connectivity datasets will become available,

formats will standardize, and tracing techniques will improve. In all cases, inference

methods like the ones we developed are essential for accessing the underlying connec-

tome. And the methods we use to understand connectomes–network science [Sporns,

2010], topographic organization, dynamical models, and hopefully new paradigms–are

crucial.

These mesoscopic models can be tied to the microscopic level by viewing them as pri-

ors on the average levels of connectivity, i.e. the average degree, of connections between

neurons in different spatial positions. This leads naturally to the kind of random graph

models studied in Chapter 3. These types of models are already being studied empiri-

cally as models of cortical columns [Markram et al., 2015, Reimann et al., 2015, Cain et al.,

2016, Reimann et al., 2017, Schuecker et al., 2017] in attempts to understand “canonical”

cortical computations [Miller, 2016]. Random graphs have also been successful in pre-
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dicting the properties of feedforward neuronal networks [Marr, 1969, Albus, 1971, Babadi

and Sompolinsky, 2014, Litwin-Kumar et al., 2017, Cayco-Gajic et al., 2017]. The spectral

properties of these models are important for understanding the behavior of dynamical

systems on these graphs. For instance, the spectral gap is related to whether a network

of oscillators will synchronize. Furthermore, we have seen that random graphs lead to

interesting mathematical problems, and that they are much more generally applicable in

computer science, machine learning, etc.

In Chapter 4, we model the respiratory rhythm using a biophysical dynamical system

on a random network. We show how the structure of that network, both the composition

of inhibitory and excitatory cells as well as the average connectivity, drives a transition

from a synchronous to an irregular state. This seems promising for explaining the role of

the “anomalous” inhibitory cells there. Understanding synchrony is important for pattern

generation and other brain rhythms [Buzsaki, 2006, Kopell et al., 2010, Ainsworth et al.,

2012]. However, there is also a huge amount of interest in the apparently asynchronous

and chaotic state exhibited by cortical networks, which seems to arise from plasticity rules

that maintain excitation/inhibition balance [Ginzburg and Sompolinsky, 1994, Sussillo

and Abbott, 2009, 2012, Renart et al., 2010, Deco et al., 2014, Markram et al., 2015, among

others].

Determining what kinds of computation are possible in these different dynamical

states, as well as how they are maintained and modulated through plasticity and learning,

remains a crucial area for computational neuroscience. The role of the network is central

to it all.
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stantinos Sfyrakis, Ying Shi, Julian C. Shillcock, Gilad Silberberg, Ricardo Silva, Farhan
Tauheed, Martin Telefont, Maria Toledo-Rodriguez, Thomas Tränkler, Werner Van Geit,
Jafet Villafranca Dı́az, Richard Walker, Yun Wang, Stefano M. Zaninetta, Javier DeFe-
lipe, Sean L. Hill, Idan Segev, and Felix Schürmann. Reconstruction and Simulation of
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sual areas (e.g. [Garrett et al., 2014]). D, Assuming locations in VISp (the
primary visual area) project most strongly to positions which represent the
same retinotopic coordinates in a secondary visual area, then we expect the
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2.2 Comparison of the true (Above left) and inferred connectivity from 5 in-
jections. Unless noted, λ = 100. Above right, we show the what happens
when we solve (P1) without the matrix completion term PΩ. The holes in
the projection data cause patchy and incorrect output. Note the colorbar
range is 6× that in the other cases. Below left is the result with PΩ but
without regularization, solving (P1) for λ = 0. There, the solution does not
interpolate between injections. Below right is a rank r = 20 result using
(P2), which captures the diagonal band and off-diagonal bump that make
up Wtrue. In this case, the low rank result has less relative error (9.6%) than
the full rank result (11.1%, not shown). . . . . . . . . . . . . . . . . . . . . . 26

2.3 Inferred connectivity using all 28 selected injections from visual system
data. Above left, Projections from a source voxel (blue) located in VISp to
all other voxels in the visual areas. The view is integrated over the superior-
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connections to higher areas, in particular VISam, VISal, and VISl. Movies
of the inferred connectivity (full, low rank, and the low rank residual) for
varying source voxel are available in the supplementary material. Above
right, For a source 800 µm away, the pattern of anterograde projections is
similar, but the distal projection centers are shifted, as expected from retino-
topy. Below, The residuals between the full rank and rank 160 result from
solving (P2), for the same source voxel as in the center. The residuals are
an order of magnitude less than typical features of the connectivity. . . . . 30

3.1 The structure of every bipartite, biregular graph. There are n = |V1| left
vertices, m = |V2| right vertices, each of degree d1 and d2, with the con-
straint that nd1 = md2. The distribution G(n, m, d1, d2) is taken uniformly
over all such graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 An example circuit that contributes to the trace in Eqn. (3.2), for k = 2 and
` = 2. Edges are numbered as they occur in the circuit. Each segment
{γi}4

i=1 is of length `+ 1 = 3 and made up of edges 3(i − 1) + 1 through
3i. The last edge of each γi is the first edge of γi+1, and these are shown
in purple. Every path γi with i even follows the edges backwards due
to the matrix transpose. However, this detail turns out not to make any
difference since the underlying graph is undirected. Our example has no
cycles in each segment for clarity, but, in general, each segment can have
up to one cycle, and the overall circuit may be tangled. . . . . . . . . . . . . 51
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3.3 The different cases of Lemma 8, which concerns P(e ∈ G|H): the prob-
ability of an edge e existing in the random graph G, given an observed
subgraph H, shown in green. The new edge e connects at vertex v. All the
green vertices lie in H. When the connecting vertex has degree one in sub-
graph H, i.e. hv = 1 and case (ii), it induces a two-path. The probability of
that edge is closer to the entries of the centering matrix S if hv > 1, case (i). 54

3.4 Encoding an `-tangle-free walk, in this case the first walk in the circuit γ1,
when it contains a cycle. The vertices and edges are labeled in the order
of their traversal. The segments γa, γb, and γc occur on edges numbered
(1, 2, 3); (4+ 6i, 5+ 6i, 6+ 6i, 7+ 6i, 8+ 6i, 9+ 6i) for i = 0, 1, . . . c; and (10+
6c), respectively. The encoding is (0, 3, 0)|(0, 4, 3)(4, 0, 0)‖(0, 1, 0). Suppose
c = 1. Then ` = 22 and the encoding is of length 3 + (4 + 1 + 1)(c + 1) + 1,
we can back out c to find that the cycle is repeated twice. The encodings
become more complicated later in the circuit as vertices see repeat visits. . 65

3.5 Schematic and realization of a random regular frame graph. A, the frame
graph. The vertices of the frame (red = A, green = B, blue = C) are weighted
according to their proportions p in the random regular frame graph. The
edge weights Dij set the between-class vertex degrees in the random regu-
lar frame graph. This frame will yield a random tripartite graph. B, real-
ization of the graph on 72 vertices. In this instance, there are 1/8× 72 = 9
green and red vertices and 3/4× 72 = 54 blue vertices. Each blue vertex
connects to kCA = 1 red vertex and kCB = 2 green vertices. This is actually
a multigraph; with so few vertices, the probability that the configuration
model algorithm yields parallel edges is high. . . . . . . . . . . . . . . . . . 76

4.1 With higher fraction of inhibitory cells, synchrony and burst amplitude
decrease, and the integrated timeseries becomes more variable. Three
simulations of the respiratory network model: A, pI = 0%; B, pI = 20%; C,
pI = 40%. Above, we show the integrated trace, which is a lowpass-filtered
average of the spiking activity of all N = 300 neurons in the network.
Below, we show the spike raster of individual neuron activity. In all cases,
kavg = 6, gE = gI = 2.0 nS. Detected bursts are marked by open circles
on the integrated traces. At lower levels of synchrony, as in part C, what
constitutes a burst becomes ambiguous. . . . . . . . . . . . . . . . . . . . . . 112
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4.2 Synchrony decreases with inhibition and sparsity. The highest variabil-
ity across networks occurs at the synchronization boundary. A, Syn-
chrony parameter χ averaged over 8 network realizations, plotted versus
the amount of connections kavg and the fraction of inhibitory neurons pI .
B, Standard deviation of χ over network realizations. Higher standard de-
viation indicates that the synchrony is not reliable for different networks
with those parameters. The area of highest standard deviation occurs at
the boundary of low and high synchrony, χ ≈ 0.5. This is indicative of a
phase transition between synchronized and desyncronized states. . . . . . . 113

4.3 Expiratory cells arise from inhibition, but can only occupy a minority
without disrupting the inspiratory rhythm. A, Neuron phase-locking vari-
ables for the simulation in Fig. 4.1B (kavg = 6, pI = 20%). Each neuron has
an associated complex number zi with 0 ≤ |zi| ≤ 1. The magnitude |zi| is
plotted against angle arg zi. These are used to define inspiratory, expiratory,
and tonic neurons via the labeled regions separated by the dashed lines. B,
Expiratory (anti-phase with main rhythm) neurons as a function of net-
work parameters kavg and pI . The fraction of expiratory neurons increases
with inhibition or as the connectivity becomes weaker. The blue indicates
the absence of any overall rhythm, defined as χ < 0.25. C, An example of a
simulation with two-phase activity, with kavg = 6, pI = 30%, gE = 5.0, and
gI = 2.0. A minority of neurons produce a reliable, small bump after every
burst. It is aligned near 0.7π, so it is more of a post-inspiratory or pre-
expiratory burst. These expiratory cells are rebound bursting after being
disinhibited. This is similar to the “handshake” mechanism of Wittmeier
et al. [2008]. However, this type of two-phase rhythm is very rare in simu-
lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Example rasters of expiratory, tonic, and inspiratory cells. Expiratory cells
exhibit lower firing rates than inspiratory ones, similar to the typical tonic
firing observed in slices. As shown, tonic classified cells can be bursting
so long as their bursts do not occur reliably at any given phase. The in-
spiratory cells shown are a random subset. Data are for a representative
network with kavg = 6, pI = 20% (same as Figs. 4.1B and 4.2B). . . . . . . . 116
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4.5 Expiratory cells preferentially receive input from other excitatory, expi-
ratory cells and inhibitory, inspiratory cells. B, The top row shows the
distribution of inputs, excitatory on left and inhibitory on right, colored by
whether the receiving cell is inspiratory (black bars) or expiratory (white
bars). Expiratory cells receive less excitatory and more inhibitory connec-
tions than inspiratory cells. The center and bottom rows breaks down these
inputs by the phase of the presynaptic neuron, inspiratory inputs shown in
the center and expiratory below. Expiratory cells preferentially receive ex-
citatory input from other expiratory cells (compare middle left and bottom
left). Furthermore, inhibitory input to expiratory cells tends to come from
inspiratory cells rather than other expiratory cells (middle right and bot-
tom right). Data are for a representative network with kavg = 6, pI = 20%
(same as Figs. 4.1B and 4.2B). There were 251 inspiratory, 23 expiratory, 15
tonic, and 11 silent cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 A, Schematic of the two population network. The average amount of ex-
citatory connections on average are fixed, but we vary the expected intra-
group and inter-group inhibition kintra and kinter. B and C, Two simula-
tions of the network with different parameters: Each simulation also has a
schematic on the right demonstrating the differences in inhibitory network
strengths. A thicker line indicates more connections, and a darker color
indicates a more reliable rhythm. Panel B shows the case kintra = 1.0 and
kinter = 4.0. Panel C depicts kintra = 2.0 and kinter = 1.5. There, we ob-
serve less reliable rhythms, with decreased phase order Ω and decreased
synchrony χ, despite approximately equal average phase difference Φ. D,
Average synchrony over 8 realizations for each kinter and kintra pair. Higher
values of χ occur above the diagonal kinter = kintra line. E, Average phase
difference Φ of rhythmic bursts between the two populations. No clear
trends are evident, and the value is close to Φ = 0.5, perfectly out-of-phase,
in much of the region. F, Average phase order Ω. Higher phase order in-
dicates the relative phase of bursts in Pop. 1 and Pop. 2, i.e. Φ in panel E,
are reliable. The phase order appears to be proportional to the synchrony,
with the highest values above the diagonal. Star and circle symbols in D–F
are the network parameters used to produce the rhythms in panels B and C. 120



159

4.7 In vitro array recordings from transverse slice preparations exhibit par-
tial synchrony. We performed in vitro preBötC slice experiments, where
we measured the rhythm in control, partial excitation block (DNQX 0.7 µM),
and partial excitation block with full inhibition block (DNQX 0.7 µM + PTX
20 µM). We record the preBötC population activity with a large electrode
(LFP, arb. unit) as well as individual neurons in the contralateral area us-
ing an array. The average activity of the isolated units is also shown (xint,
Hz/cell). A, Control conditions show a robust population rhythm with
some amplitude and period irregularity. B, Partial excitation block us-
ing DNQX degrades the population synchrony, with decreased burst am-
plitude, slower rhythm, and more irregular intervals between bursts. C,
Blocking inhibition with PTX allows the rhythm to recover toward control
conditions. D, Synchrony in the model, as a function of excitatory and
inhibitory synaptic conductances gE and gI , increases with stronger excita-
tion and decreases with stronger inhibition, similar to varying connectivity
kavg and inhibitory fraction pI . Arrows indicate the presumed effects of
DNQX and PTX on the model. E, Measurements of synchrony from our
4 array recording experiments. Synchrony takes intermediate values in all
conditions, decreasing with DNQX and recovering after PTX. . . . . . . . . 124

4.8 Modulation of inhibition and excitation changes the rhythm in compa-
rable ways for experiments and the model. (Above: model) The effect of
changing conductances gE and gI . Burst amplitude and period irregular-
ity decrease with stronger excitation and weaker inhibition. Both of these
measures are negatively correlated to the population synchrony, shown
in Fig. 4.7D. (Below: experiments) This plot summarizes 17 experiments.
We extracted bursts from the LFP and measured the amplitude and fre-
quency irregularity of those rhythms. Amplitude irregularity showed no
significant trends across conditions. However, period irregularity showed
a significant increase from control with DNQX, a decrease from DNQX to
DNQX+PTX, and a small increase between control and DNQX+PTX. See
Table 4.2 for the full output of the statistical tests. . . . . . . . . . . . . . . . 128

4.9 The effect of DNQX and PTX on in vitro rhythm amplitude and period,
similar to Figure 4.8. Amplitude decreases with DNQX while period in-
creases, with both recovering to near baseline after addition of PTX. See
Table 4.2 for the result of statistical tests on this data. . . . . . . . . . . . . . 130
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2.1 Model performance on Allen Institute Mouse Brain Connectivity Atlas data.
Cross-validation errors of the voxel model (P1) and regionally homoge-
neous models are shown, with training errors in parentheses. The errors
are computed in both voxel space and regional space, using the relative
mean squared error MSErel, Eqn. (2.4). In either space, the voxel model
shows reduced training and cross-validation errors relative to the regional
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Parameters for the network model are taken from the literature [Butera
et al., 1999a, Park and Rubin, 2013]. We modify gL for quiescent (Q), tonic
spiking (TS), and intrinsically bursting (B) cells. The system of equations is
simulated in the given units, so that no conversions are necessary. Those
parameters below the lower horizontal break are for the synaptic dynamics. 100

4.2 Statistical results for in vitro measurements of amplitude irregularity, pe-
riod irregularity, amplitude, and period. We report the estimated fixed ef-
fect for the intercept, DNQX, and DNQX+PTX conditions, as well as stan-
dard error (SE), degrees of freedom (DF), t value, and p value for each
effect. These data summarize 17 LFP recordings save the synchrony fit,
which comes from 4 multielectrode recordings. . . . . . . . . . . . . . . . . 129
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